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Abstract

This paper proposes a framework and solution concept for repeated coali-
tional behavior. We model history-dependent schemes that deter coalitions from
blocking using continuation promises and punishments. We evaluate the effec-
tiveness of these schemes across a range of settings. We apply our results to
repeated matching and negotiations.
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1 Introduction
The study of repeated games models history-dependent schemes that enable players to
cooperate even if each myopically favors defection. This canonical approach focuses on
non-cooperative play in which actions are chosen only by individuals. But, in many
contexts, analysts have found it more useful to allow groups of players to act jointly.
For instance, matching and network theory model “pairwise stable arrangements” from
which no pair of players can profitably deviate. Political economy models emphasize
the “Condorcet Winner,” a policy preferred by a majority of voters to all others. More
broadly, the study of cooperative games looks at the “core,” an arrangement that no
group of players would find it profitable to block. These notions are all modeled for
static interactions, without harnessing the power of promises and punishments.

A natural question is how one can marry these two approaches to group behavior.
Our motivation is twofold. First, to develop a tractable and portable framework that
speaks to how repeated play could shape behavior in matching, voting, and other
coalitional games. Second, to evaluate generally when dynamic incentives deter group
defection; conversely, our analysis identifies settings in which the ability of groups to
defect cripples dynamic incentives.

We illustrate our framework using the Roommates Problem. Ann, Bella, and Carol
decide who will room together. The hitch is that only two people can share a room,
leaving at least one person out. Each person prefers to have a roommate, and each has
a favorite; Table 1 depicts their payoffs.

Ann Bella Carol
Ann 1 3 2
Bella 2 1 3
Carol 3 2 1

Table 1. Payoffs of Row Player from matching with Column Player (or remaining unmatched).

As is well known, no arrangement is pairwise stable. For instance, were Ann and
Bella paired as roommates, Bella and Carol would each gain if they defected and
roomed together instead. Our point of entry is to see how punishment and rewards
can “solve” this problem.

Suppose that instead of a one-time decision, the trio made choices monthly. Each
accrues the flow payoffs described above, and weights them by the per period discount
factor δ. As in repeated games, no player can commit to her future behavior on- or
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Figure 1. A perfect coalitional equilibrium for the Roommates Problem if δ ≥ 1/2.

off-path. What long-run stable matches can be supported through continuation play?
Figure 1 depicts a stable scheme. On the path of play, Ann and Bella room together

each month, leaving Carol out. While Bella and Carol might like to defect and share
a room this month, the scheme assures that they refrain from doing so if δ exceeds
1/2. For Bella anticipates that after the deviation, starting from next month, Ann
and Carol would room together and she would then be left out. Her short-term gain
from rooming with Carol would not offset her long-term loss, since (1− δ)3+ δ(1) ≤ 2.
Moreover, the punishment is itself credible because the prescription following every
history, including those off-path, is self-enforcing.

We model schemes of this form in general games. We consider the repeated play of
an abstract stage game that accommodates many settings: (i) a strategic form game in
which players and coalitions choose actions, (ii) a characteristic function game in which
coalitions can block, (iii) matching games with and without transferable utility, and (iv)
voting games in which different coalitions have varying power to push through policies.
In this repeated game, we propose history-dependent schemes where no coalition profits
from blocking at any history given how it affects continuation play. We call such
schemes perfect coalitional equilibria (PCE).

PCEs are inherently recursive. In repeated strategic form games, PCE refines sub-
game perfect equilibria. Outside of that context, PCE offers a tractable way to model
how continuation promises shape coalitional behavior; PCE’s recursive nature implies
that its payoff set can be obtained via self-generation approaches developed by Abreu,
Pearce, and Stacchetti (1990). In fact, we show that it can be even simpler in many
settings: all PCE-supportable payoffs can be supported by stationary PCE if the stage
game exhibits default-independent power. This property holds in the characteristic
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function games studied in cooperative game theory, matching models without exter-
nalities, and in models of voting.

Our main results characterize generally when continuation promises and punish-
ments deter coalitional blocking. We offer conditions under which history dependence
thwarts coalitional deviations so that the set of PCE-supportable payoffs is large. Con-
versely, we also identify settings in which coalitional deviations choke the possibility
for cooperation, resulting in “anti-folk” theorems. Underlying our results is a sim-
ple principle: a coalition can withstand punishments if and only if its members have
highly aligned interests. Then, all members of that coalition enjoy a high minmax,
considerably above their individual minmax. However, if there is any wedge in mem-
bers’ incentives, player-specific punishments can splinter coalitions. Then, the set of
PCE-supportable payoffs virtually coincides with that of subgame perfect equilibria.

Building on this principle, we explore features that align coalitions’ interests. We
find that one such feature is the use of strongly symmetric schemes, where players
behave symmetrically after every history. These schemes feature often in the study
of repeated games, such as grim-trigger punishments used to support cooperation in
a repeated prisoner’s dilemma or to sustain collusion among oligopolists. Although
these schemes constitute subgame perfect equilibria, we show that they typically are
not PCE. The reason is that once players’ incentives are aligned, punishments are
no longer credible. By contrast, schemes that feature asymmetric play off-path can
credibly deter blocking coalitions and support a larger payoff set.

We also study whether the ability to transfer utility across players necessarily aligns
incentives within a coalition. One might have expected the answer to be yes: if a coali-
tion achieves a net gain by blocking, it can distribute those gains among its members
to ensure that each benefits. However, we show that if all transfers are publicly ob-
served, a PCE can break coalitions apart by conditioning its continuation play on who
pays whom. Conversely, if a coalition can make transfers “secretly”—that is, without
the transfers being publicly observed—it can entirely align its incentives. We show
that such a coalition effectively functions as a unitary agent and secures a high payoff
across all PCE. Therefore, secret side-payments limit how much such a coalition can
be punished and, consequently, what a PCE can enforce.

We consider a detailed application of our results to repeated labor-market match-
ing, building on Kelso and Crawford (1982)’s seminal work. Here, we study the kinds
of matchings, wages, and allocations of surplus that can be supported through repeated

3



play. It turns out that the set of supportable outcomes hinges crucially on the trans-
parency of past wages. Under wage transparency, a vast range of outcomes can be
supported, enabling workers or firms to capture much of the surplus. By contrast,
if wage terms are observed only by the employer and employee, there is a complete
collapse of intertemporal incentives: the supportable payoff set reduces to the core of
the stage game. As to who then benefits from wage transparency depends on eco-
nomic primitives. Workers benefit if they are plentiful or their marginal returns fall
quickly. Absent transparency, competitive forces bid down their wages; by contrast,
wage transparency enables them to enforce higher wages through collective-bargaining
schemes. If workers are scarce or their marginal returns fall slowly, then it is firms who
profit from wage transparency because that enables them to collusively suppress wages.
Thus, our application highlights a new dimension to the debate on wage transparency,
connecting it to the side of the market that it empowers to collude.

We also study repeated negotiations when some players have veto power. In the
stage game, those with veto power effectively become dictators: the core entails that the
veto players capture the entire surplus. Against that backdrop, we study when history
dependence can promote egalitarianism. Using our stationarity result described above,
we characterize the set of supportable payoffs for fixed discount factors and show that
it typically includes equal splits. However, egalitarian schemes collapse if veto players
can make secret side-payments to other coalition members; if every minimal winning
coalition can make secret side-payments, veto players return to being de facto dictators.

We briefly discuss related work. Bernheim and Slavov (2009) propose the notion
of a Dynamic Condorcet Winner for an infinitely repeated voting game. Our solution
concept coincides with theirs when applied to majority-rule voting. While they describe
some properties of their concept, they do not characterize its limits. Consequently,
many issues central to our study do not feature in their work. Moreover, our analysis
goes beyond voting games, applying to general coalitional settings.

We draw on results in repeated games, particularly Fudenberg and Maskin (1986)
and Abreu, Dutta, and Smith (1994); the latter’s characterization of equivalent utilities
turns out to be the appropriate notion of alignment for settings without transfers. One
of our results highlights how secret transfers can align coalitional incentives and thereby
undermine punishments. That secret side-payments can cripple dynamic incentives
features also in Barron and Guo (2021), who model a relational contracting game
between a long-run principal and a sequence of short-run agents.
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Our findings on wage transparency contribute to a growing literature, surveyed
in Cullen (2024). In a bargaining model with incomplete information, Cullen and
Pakzad-Hurson (2023) show that wage transparency disadvantages workers. We offer
a complementary perspective, studying the implications of wage transparency for the
repeated game. Beyond this application, we view incorporating long-run incentives in
Kelso and Crawford (1982)’s workhorse model to be of independent interest. In the
static setting, this framework has been enriched in various directions (e.g., Hatfield
and Milgrom 2005; Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp 2013) but
relatively little is known about how carrots and sticks affect these matching markets.

Several papers model coalitional deviations in repeated games. Aumann (1959)
and Rubinstein (1980) study Strong Nash and Strong Perfect Equilibria of infinitely
repeated games; these concepts assume that players cannot commit to long-term plans
on the equilibrium path but can do so when deviating. DeMarzo (1992) focuses on
finite-horizon games, proposing an inductive solution that corresponds to a Strong
Nash equilibrium of the reduced normal-form game.1 A different strand of the literature
models questions of renegotiation—see, for instance, Bernheim and Ray (1989), Farrell
and Maskin (1989), Miller and Watson (2013), and Safronov and Strulovici (2018)—in
which players can collectively rewire their expectations of future play. Our work studies
the complementary question of when coalitions refrain from profitably blocking given
their rational expectations of future play.

That expectations of future play can shape coalitional behavior underlies the work
on farsighted coalition formation, surveyed in Ray (2007). Konishi and Ray (2003)
and Gomes and Jehiel (2005) study settings like ours in which payoffs accrue in real
time and coalitions evaluate moves based on discounted continuation values. Their
analyses assume history independence, precluding the use of punishments and rewards.
Vartiainen (2011) models history-dependence in a different setting without real-time
payoffs; his focus is on the existence of deterministic absorbing processes. Dynamic
considerations also feature in studies of matching in which players account for future
play when deciding with whom to match, e.g., Corbae, Temzelides, and Wright (2003),
Damiano and Lam (2005), Kadam and Kotowski (2018a,b), Doval (2022), and Kotowski
(2024). Rostek and Yoder (2024) propose a stability notion for static matching in which
similar considerations emerge from players thinking strategically about others’ choices.

1An alternative way to model coalitional play is through repeated extensive-form games (Mailath,
Nocke, and White 2017); Hatfield, Kominers, and Lowery (2020) and Hatfield, Kominers, Lowery, and
Barry (2020) use such an approach to model collusion in brokered and syndicated markets.
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Since our initial draft, Bardhi, Guo, and Strulovici (2024) use our approach to
model stability in labor markets in which firms learn about workers’ types, evaluating
how early-career discrimination can result in persistent wage gaps. Liu (2023) and Liu,
Wang, and Zhang (2024) also build on the approach here to study repeated matching
between long-run firms and short-run workers.

This paper proceeds as follows. Section 2 describes the basic framework. Section 3
identifies structural properties of PCE and characterizes its payoff set. Section 4 studies
the game augmented with transfers. Section 5 applies our results to matching and
distribution problems. Section 6 concludes. All proofs are in appendices.

2 Model
Players N := {1, 2, . . . , n} interact repeatedly at t = 0, 1, 2, . . .. A coalition is a
nonempty subset of N , and we denote the set of coalitions by C := 2N\{∅}.

The Stage Game. In each period, the players collectively choose an alternative a

from A, a compact metrizable space. The alternative a generates payoff vector v(a) :=
(v1(a), . . . , vn(a)) ∈ Rn for players, where the mapping v : A → Rn is continuous.

Given an alternative, a coalition of players can choose to block or participate in
it. Our specification allows for blocking by either a single coalition or multiple disjoint
coalitions, but the former is what matters when evaluating stability. If coalition C alone
blocks alternative a, then it can choose any alternative in EC(a). The correspondence
EC : A ⇒ A is C’s effectivity correspondence and offers a standard approach to model
coalitional power (e.g., Rosenthal 1972; Moulin and Peleg 1982; Chwe 1994). We
assume that EC(·) is continuous, compact-valued, and reflexive (i.e., a ∈ EC(a)). In
our analysis, we also assume that larger coalitions can do more: for each alternative a,
EC′(a) ⊆ EC(a) for C ′ ⊆ C. This assumption is for notational convenience; we detail
in footnotes, when necessary, how to adapt notation if this assumption fails.

To see what this formulation captures, let us revisit the Roommates Problem de-
scribed in the introduction. An alternative is a rooming arrangement, and the set
of alternatives, A = {ab|c, bc|a, ac|b, a|b|c} is that of all arrangements, where ij|k de-
notes i and j rooming together leaving k out. For the alternative that puts Ann
and Bella together, Bella could block as an individual and choose an arrangement in
E{Bella}(ab|c) = {ab|c, a|b|c}. This specification is tantamount to her only choice as an
individual being whether to accept or reject Ann as a roommate. Carol has even less
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power—E{Carol}(ab|c) = {ab|c}—because she cannot room with someone else without
that player’s consent. But by teaming up and blocking as a pair, Bella and Carol could
choose any alternative in E{Bella,Carol}(ab|c) = {bc|a, ab|c, a|b|c} where the first element
denotes the pair rooming together.

The Roommates Problem serves as a specific illustration but the abstract form
is considerably more general, capturing strategic form games, characteristic function
games, voting games, as well as matching. We formalize how to embed the first three
games below, deferring the discussion of matching to Section 5.1.

Example 1. Consider a strategic form game in which player i’s action set, Ai, is
compact: Ai can be either the set of pure actions or the set of mixtures over finite
actions. The set of alternatives is the set of action profiles A := ×n

i=1Ai. The effectivity
correspondence is EC(a) :=

{
a′ ∈ A : a′j = aj for all j /∈ C

}
, modeling the possibility

for a blocking coalition to choose action profiles in which players outside the coalition
do not change their actions. This formulation extends the standard definition for
individual deviations that are used to define Nash equilibria.

Example 2. Consider majority voting, as in Bernheim and Slavov (2009). Let W
be the set of coalitions that have at least

⌈
n
2

⌉
players. The effectivity correspondence

specifies that for every a, EC(a) = A if C ∈ W, and EC(a) = {a} otherwise.

Example 3. Consider characteristic function games (N,U) where for each coalition
C ∈ C, the mapping U(C) ⊆ R|C| specifies a set of feasible payoff vectors for coalition
C if it forms. An alternative a is now a tuple (π, u), where π is a partition of N , and
u ∈ Rn is a payoff vector satisfying uC ∈ U(C) for each coalition C ∈ π. The effectivity
correspondence EC(a) specifies the set of alternatives to which coalition C may move,
and the payoff function is v((π, u)) = u.

Outcomes, Histories, and Plans. We develop our notation recursively. A plan
specifies a default alternative, say a, at the beginning of period t = 0. This default
is chosen if no coalition blocks it, in which case we record the stage-game outcome as
(a, ∅). If coalitions {C1, . . . , Ck} block the default, and their moves result in the alterna-
tive a′, we record the stage-game outcome as (a′, {C1, . . . , Ck}). Based on the outcome
at t = 0, a plan specifies a default at t = 1, and the game continues recursively.2

2We assume that coalitional blocking is directly observable so as to hew closely to repeated games
with perfect monitoring, which we view to be the natural starting point. In some settings, the identity
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Proceeding abstractly, let P be the set of all partitions over players, and define
B := {B ⊆ 2N : B ⊆ π for some π ∈ P}, so that each B in B is a collection of
disjoint coalitions. We denote the set of stage-game outcomes by O := A × B; an
outcome specifies an alternative a and a collection of disjoint blocking coalitions. At
the beginning of period t, the history h := (aτ , Bτ )t−1

τ=0 records the stage-game outcomes
up to the start of period t. We denote the set of all t-period histories by Ht for t ≥ 1.
The set of all histories is H :=

⋃∞
t=0 Ht, where H0 = {∅}. A plan σ : H → A specifies

a default alternative following each history.

Payoffs. A path (at)t=0,1,2,... is an infinite sequence of alternatives; from that path,
player i accrues a normalized discounted payoff of (1 − δ)

∑∞
t=0 δ

tvi(a
t), in which δ

in [0, 1) is a common discount factor. After a history h, a plan σ results in the path
(σ(h), σ(h, σ(h), ∅), . . .) recursively and Ui(h|σ) denotes player i’s payoff from that path.

Solution Concept. Before describing our solution concept, we restate the “static
core” in the language of this model. In the stage game, coalition C profitably blocks
alternative a if there exists a′ ∈ EC(a) such that vi(a

′) > vi(a) for all i ∈ C. An
alternative a is a core alternative if it cannot be profitably blocked by any coalition. A
payoff vector ṽ is in the core if there exists a core-alternative a such that ṽ = v(a). For
example, in the Roommates Problem, ab|c fails to be a core alternative because Bella
and Carol together can profitably block it.

We build on this notion in the repeated game: when players contemplate blocking
the alternative σ(h) specified by plan σ at history h, they care not only about their
instantaneous payoffs but also about how their choices today affect future behavior.

Definition 1. Coalition C profitably blocks plan σ at history h if there exists a′ ∈
EC(σ(h)) such that for all i ∈ C,

(1− δ)vi(a
′) + δUi(h, (a

′, {C}) | σ) > Ui(h | σ).

Definition 2. A plan σ is a perfect coalitional equilibrium (PCE) if it cannot be
profitably blocked by any coalition at any history.

of a blocking coalition is implied by the chosen alternative. But, in other settings (e.g., matching),
the chosen alternative alone might not be enough to encode who initiated the block. For instance,
in the Roommates Problem, if the alternative ab|c is blocked and we only record that a|b|c is chosen
instead, it does not distinguish which of Ann and Bella blocked.
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A PCE is a “self-enforcing” plan in that, given the continuation play, no coalition
finds it profitable to block.3 In the language of self-generation, the alternative specified
at each history is enforced by continuation promises that themselves are credible given
that the requirement is imposed at every history (including those off-path). Thus, the
continuation of a PCE at every history must itself be a PCE. This recursive form implies
that the set of PCE supportable payoffs is amenable to dynamic programming à la
Abreu, Pearce, and Stacchetti (1990). If δ = 0, PCEs implement only core alternatives
of the stage game; furthermore, a plan that specifies a core alternative a∗ after every
history is necessarily a PCE for every δ ≥ 0. Below, we describe PCE-supportable
payoffs and identify some structural properties of PCE.

3 What Payoffs Are Supported by PCE?
3.1 Coalitional Minmaxes

In the introduction, we mentioned how coalitions can withstand punishments if they
share highly aligned interests, which in turn limits the scope of PCE-supportable pay-
offs. We illustrate this phenomenon using the common-interest game depicted in Ta-
ble 2(A). Here, we adopt the specification of coalitional moves stipulated in Example 1:
each player can adjust her own action and the pair can choose an action profile.

L R

U 1, 1 0, 0

D 0, 0 0, 0

(A)

L R

U 1, 1 −ϵ, ϵ

D 0, 0 0, 0

(B)

Table 2. Payoffs in (A) are perfectly aligned while those in (B) are slightly misaligned (ϵ > 0).

This game has a unique PCE, which prescribes the efficient action profile (U,L)

at every history guaranteeing each player a payoff of 1. To see why, let w denote the
infimum of the normalized discounted payoffs from all PCEs, and consider an arbitrary
PCE in which each player accrues w ∈ [0, 1]. Since the continuation of a PCE at any
history must itself be a PCE, if the pair blocks the alternative in the first period and
chooses (U,L) instead, each player receives at least (1 − δ) + δw. The pair profits
from the deviation unless w ≥ (1 − δ) + δw. Because this inequality must hold for w

arbitrarily close to w, it then follows that w ≥ 1.
3An alternative definition of profitable blocking might stipulate that each coalition member gains

weakly and at least one does so strictly. This modification would not affect our results.
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In this common-interest game, there is a gap between PCE and subgame perfect
equilibrium (henceforth SPE) payoffs: as (D,R) is a Nash equilibrium of the stage
game, all payoffs in [0, 1] can be supported by SPE of the repeated game. It turns out
that the complete alignment of preferences is both sufficient and necessary for this gap.
We find that coalitions of perfectly “like-minded” players can guarantee themselves a
high coalitional payoff across all PCEs, regardless of discount factors. But misaligning
preferences ever so slightly disrupts coalitions sufficiently that individual minmaxes
again prove relevant. For instance, our analysis shows that for the stage game in
Table 2(B), PCE can support payoffs arbitrarily close to 0 when players are patient.

The right general formulation of alignment here uses Abreu, Dutta, and Smith
(1994)’s notion of equivalent utilities: players i and j have equivalent utilities if there
exist k > 0 and c ∈ R such that vj(a) = kvi(a) + c for all a ∈ A; otherwise, their
utilities are not equivalent. We partition the set of players according to this criterion;
let C(i) be the set of players with whom player i shares equivalent utilities.

This set leads to what we find to be player i’s coalitional minmax, namely the lowest
payoff that she can be pushed down to when coalition C(i) collectively best responds.

v◦i := min
a∈A

max
a′∈EC(i)(a)

vi(a
′). (Player i’s coalitional minmax)

This term is well-defined as A is compact, v(·) is continuous, and EC is continuous
and compact-valued.4 Using V to denote the convex hull of stage-game payoffs, we
define VCR := {v ∈ V : vi > v◦i for every i = 1, . . . , n} as the set of strictly coalitionally
rational payoffs.5 We distinguish this minmax from a player’s individual minmax:

vi := min
a∈A

max
a′∈E{i}(a)

vi(a
′). (Player i’s individual minmax)

Generally, v◦i is higher than vi. The two coincide if player i does not share equivalent
utilities with any other player, i.e., C(i) = {i}. More strongly, VCR coincides with the
set of strictly individually rational payoffs if no two players have equivalent utilities.
The Roommates Problem lies in this class as do non-cooperative games that satisfy
the NEU condition or full-dimensionality.

4Assuming that EC is monotone in C simplifies the expression; absent monotonicity, the coalitional
minmax would be v◦i := mina∈A maxC⊆C(i) maxa′∈EC(a) vi(a

′). This expression coincides with that
above if EC(a) ⊆ EC(i)(a) for every player i, coalition C ⊆ C(i), and alternative a.

5Although our setup does not have public randomization, the convex hull is relevant because these
payoffs may be reached through intertemporal averaging (Sorin 1986; Fudenberg and Maskin 1991).

10



3.2 The Power of Scapegoat Schemes

With these preliminaries in place, we state our first result.

Theorem 1. For every δ ≥ 0, every PCE gives each player i a payoff of at least v◦i .
Moreover, for every v ∈ VCR, there is a δ < 1 such that for every δ ∈ (δ, 1), there
exists a PCE with discounted payoff equal to v.

The first part of the result identifies v◦i as the appropriate minmax when coalitions
can block: no PCE can push a player’s payoff below her coalitional minmax. The second
part shows that every strictly coalitionally rational payoff vector can be supported if
players are sufficiently patient.

A natural comparison for Theorem 1 is to the folk theorem for SPE in repeated
games with perfect monitoring. For this comparison, suppose that no two players share
equivalent payoffs. Then Theorem 1’s implication coincides with that of Fudenberg
and Maskin (1986) and Abreu, Dutta, and Smith (1994). We highlight two differences.
First, the result applies for both repeated “cooperative” and “non-cooperative” games,
including settings such as repeated matching. Second, and more crucially, PCE are
robust to both coalitional and individual deviations. Against this backdrop, our result
clarifies that if players’ preferences are misaligned and players are patient, deterring
coalitional deviations is not harder than deterring individual deviations.

Why? In the proof, we design punishments that crack coalitions. Because blocking
requires all coalition members to agree, we can deter coalitions by singling out and
punishing just one member of each coalition—a “scapegoat”—as though she were the
sole deviator, while granting amnesty to the rest. This approach assures that if coalition
members’ utilities are not equivalent, a PCE can push each player’s payoff arbitrarily
close to her individual minmax.6

This divide-and-conquer scheme fails if all members of the coalition share equivalent
utilities. A higher minmax then applies. To see why, consider such a coalition C and
suppose towards a contradiction that some PCE σ could push the payoffs of players
in C below their coalitional minmax. Observe that members of coalition C could
guarantee their coalitional minmax if they could somehow commit to a long-run plan
in which they collectively best respond to the alternative specified by the plan after

6We observe that a coalition can be cracked even if all coalition members share the same ordinal
rankings over alternatives; a PCE can nevertheless create player-specific punishments and isolate a
coalition member as a scapegoat through its choice of how to sequence alternatives.
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every history. Because payoffs are equivalent, all gains and losses for C’s members
move in sync if the coalition were to proceed with this plan. By induction, it then
follows that there exists a history at which coalition C could profitably block, which
precludes σ from being a PCE.

Thus, Theorem 1 highlights that a coalition withstands the force of repeated games
if and only if its members share completely aligned preferences. On the one hand, this
conclusion might appear to emphasize a “knife-edge” consideration. Yet, it applies to
common-interest games, a commonly studied setting, in which we find that only efficient
action profiles are chosen in a PCE.7 More importantly, as we show in our study of
strongly symmetric equilibria (Theorem 3) and secret side-payments (Theorem 5), this
theme of alignment emerges even if players do not have equivalent utilities.

3.3 Structural Properties

3.3.1 When Do Stationary PCEs Suffice?

Given its recursive form, PCE payoffs may be obtained using self-generation approaches
(Abreu, Pearce, and Stacchetti 1990). Herein, we highlight a property that distin-
guishes PCE from SPE: in a rich class of games, all PCE payoffs may be achieved
using PCE that are stationary. A plan σ is stationary if following every history h, the
plan σ specifies the same alternative in each period so long as the plan is not blocked,
i.e., σ(h, (σ(h), ∅)) = σ(h). Blocking induces a transition whereby a stationary plan
would then specify a potentially different alternative but would do so again in every
subsequent period.

In principle, stationarity could restrict the set of supportable payoffs. However, it
turns out not to have any bite in convex games with default-independent power. As
the latter notion is novel, we turn to it first. For each coalition C and alternative a,
let vC(a) := {(vi(a))i∈C} denote the projection of v(a) to C’s payoff space.

Definition 3. A stage game exhibits default-independent power if for every coali-
tion C and alternatives a and a′, vC(EC(a)\{a}) = vC(EC(a

′)\{a′}).

Definition 3 asserts that what a coalition can obtain through blocking an alternative
does not depend on that alternative. While this notion might appear stringent, several
well-studied coalitional games (including our applications) exhibit this property.

7For these games, the coalitional minmax therefore departs from—and is generally higher than—
Wen (1994)’s effective minmax for SPE, which would be mina∈A maxj∈C(i) maxa′

j∈Aj
vi(a−j , a

′
j).
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For instance, consider any characteristic function game studied in the classical co-
operative game theory literature (Example 3). In such a game, if a coalition blocks a
default partition π, the set of utilities that it achieves does not depend on the parti-
tion. As an application here, one might consider a matching model without external-
ities; therein, the set of utilities that a group of players can obtain from blocking an
assignment does not hinge on the assignment.

As another example, consider models of voting in political economy in which a
“winning” coalition can block and choose any policy—EC(a) = A—and every non-
winning coalition is completely powerless (i.e., EC(a) = {a}). Such settings include
majoritarian rules (where |C| must have at least (n + 1)/2 players to have power) as
well as supermajority voting rules, weighted voting rules in which players have unequal
power, and voting procedures in which some players have veto power.

Our result identifies how stationary PCEs suffice in default-independent games if
the stage game is convex, i.e., {ṽ ∈ Rn : ∃a ∈ A such that ṽ = v(a)} is a convex set.8

Theorem 2. If the stage game is convex and exhibits default-independent power, then
for every δ ≥ 0, the set of PCE-supportable payoffs coincides with that supported by
stationary PCEs.

Theorem 2 offers a conclusion that would be unexpected of subgame perfect equi-
libria of repeated games; optimal penal codes often involve non-stationary play (Abreu
1988). The proof invokes both convexity and default-independent power: the former
enables us to replace a non-stationary path of play with a stationary path and the lat-
ter assures that the replacement does not affect any coalition’s incentives. Our result
generalizes Bernheim and Slavov (2009) who obtain this conclusion for Dynamic Con-
dorcet Winners. By clarifying that default-independent power is the key underlying
property, Theorem 2 establishes that this conclusion holds much more broadly.

3.3.2 An Anti-Folk Theorem for Strongly Symmetric PCE

Green and Porter (1984) and Fudenberg, Levine, and Maskin (1994) elucidate how
with monitoring imperfections, strongly symmetric equilibria are inefficient but asym-
metric play can support near-efficient payoffs. The theory here offers a complementary

8We view convexity to be suitable for applications in which players can transfer utility or face a
pure distribution problem. Alternatively, the set may be convex if players can access public correlation
devices and make a choice to block before the realization of those lotteries. We note that this payoff
set is compact because A is compact and v is continuous.
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rationale for asymmetric play that applies even with perfect monitoring: a strongly
symmetric PCE cannot credibly punish players because it aligns their interests.

To make this point, we study a strategic form stage game (Example 1) that is
symmetric: Ai = Aj for all players i and j, and for each permutation µ of {1, . . . , n},
vi(aµ(1), . . . , aµ(n)) = vµ(i) (a1, . . . , an) for every action profile a and player i. The set
of symmetric action profiles is AS := {a ∈ A : ai = aj for all i, j ∈ N} and V S :=

{v(a) : a ∈ AS} denotes their associated payoffs. Given that V S is compact and totally
ordered, a maximal element exists denoted v̂.

A plan σ is strongly symmetric if it specifies a symmetric action profile, σ(h) in AS,
after every history h. Theorem 3 characterizes strongly symmetric PCE.

Theorem 3. A strongly symmetric PCE exists if and only if the stage game has a
symmetric core alternative â such that v(â) = v̂; moreover, v̂ is then the unique payoff
supported by a strongly symmetric PCE.

This result reflects a collapse of intertemporal incentives in that a strongly sym-
metric PCE exists if and only if the highest symmetric payoff lies in the core and
could therefore be supported without carrots and sticks altogether. The condition is
highly restrictive, ruling out games like the repeated prisoner’s dilemma or collusion in
oligopolistic markets. For instance, consider the use of grim-trigger strategies to sup-
port mutual cooperation in these settings. Although such strategy profiles constitute
subgame perfect equilibria, Theorem 3 implies that they do not qualify as PCEs. The
challenge is that players would find it profitable to deviate at any history during the
punishment phase, rendering the punishments non-credible. Theorem 1 nevertheless
asserts that high cooperation payoffs can be supported by PCEs if players are patient.
The construction must resort to asymmetric punishments; for example, a PCE in the
prisoner’s dilemma would punish a player by having her cooperate while the other
defects for a specified number of periods before returning to mutual cooperation.

4 Do Transfers Align Incentives?

4.1 Transferable Utility Framework

We turn to the question of whether transfers align incentives. Because we vary the
observability of transfers, we model them separately from alternatives; Section 4.2
considers publicly observed transfers and Section 4.3 models secret side-payments.
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We represent transfers by T := [Tij]i,j∈N where Tij ∈ [0,∞) is the utility that player
i transfers to player j. A player’s experienced payoff is the sum of the payoff from the
chosen alternative and net transfers: ui(a, T ) := vi(a) +

∑
j∈N Tji −

∑
j∈N Tij. Let T

be the set of all n×n transfer matrices in which entries along the main diagonal equal
0 (so that a player cannot transfer utility to herself). We denote transfers paid by
members of coalition C by TC := [Tij]i∈C,j∈N ; TC is the set of |C|×n transfer matrices.

An outcome of the stage game now includes the chosen alternative, the identity of
blocking coalitions (if any), and the chosen transfers. The set of stage-game outcomes
is O := A × B × T . Histories and paths are defined analogous to the NTU case with
the addition of transfers. We denote the set of histories with transfers by H. A plan
σ : H → A×T specifies an alternative and configuration of transfers, based on history.
We use a(h|σ) and T (h|σ) to denote the default alternative and transfers in σ(h). We
modify the definition of Ui(h|σ) to reflect the influence of transfers.

By blocking the default (a, T ), a coalition C can choose a different alternative
a′ ∈ EC(a) and change their transfers to any T ′

C . A question we have to tackle is: if
a coalition blocks, what transfers do players outside the coalition make? Two distinct
answers strike us as reasonable. The first hews to a “simultaneous noncooperative”
formulation in which the blocking by coalition C surprises players outside the coalition,
who therefore make transfers T−C as was specified by the plan. The second models a
“cooperative” approach in which if a coalition blocks, its members can transfer utility
among themselves but players outside that coalition do not transfer any utility to them.
To accommodate both answers, we formulate the transfers of others abstractly.

Assumption 1. For each coalition C, if C blocks a default transfers matrix T , the
transfers made by players outside of C is χC(T ) where χC : T → TN\C satisfies:

1. For each bounded set S ⊆ T , the image χC(S) ⊆ TN\C is also bounded.

2. If T satisfies Tij = 0 for all i /∈ C, j ∈ C, then χC
ij(T ) = 0 for all i /∈ C, j ∈ C.

Assumption 1 encompasses the two specifications described above: the former
corresponds to χC(T ) = T−C whereas the latter corresponds to χC

ij(T ) = Tij for all
i, j ∈ N\C, and χC

ij(T ) = 0 for all i ∈ N\C and j ∈ C.
Thus, if coalition C blocks, chooses actions a′ and changes transfers to T ′

C , the
realized outcome is then (a′, {C}, T ′

C , χ
C(T )). We now define the versions of profitable

blocking and PCE appropriate for this setting.
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Definition 4. Coalition C profitably blocks plan σ at history h if there exists an
alternative a′ ∈ EC( a(h|σ) ) and transfers T ′

C = [T ′
ij]i∈C,j∈N such that for all i ∈ C,

(1− δ)ui

(
a′, T ′

C , χ
C(T (h|σ))

)
+ δUi

(
h, a′, {C}, T ′

C , χ
C(T (h|σ)) | σ

)
> Ui(h|σ).

Definition 5. A plan σ is a perfect coalitional equilibrium if it cannot be profitably
blocked by any coalition at any history.

To rule out Ponzi schemes, we make the following technical assumption.

Assumption 2. We consider plans σ such that continuation values are bounded across
histories:

{
U(h|σ) : h ∈ H

}
is a bounded subset of Rn.

4.2 Publicly Observed Transfers

Transfers allow blocking coalitions to distribute gains among their members. One
might intuit that transfers would then align coalition members’ incentives. However,
we find that public transfers have the opposite effect, undermining coalitions. Even
those coalitions whose payoffs would be aligned absent transfers can now be splintered.
Our result below establishes that all payoffs that are feasible and strictly individually
rational can be supported.

To state this result, we re-define the set of feasible payoffs to account for transfers:

U := co
({

u ∈ Rn : ∃a ∈ A such that
∑
i∈N

ui =
∑
i∈N

vi(a)
})

.

The set of feasible and strictly individually rational payoffs is

UIR := {u ∈ U : ui > vi for every i = 1, . . . , n} .

Theorem 4. For every δ ≥ 0, every PCE gives each player i a payoff of at least vi.
Moreover, for every u ∈ UIR, there is a δ < 1 such that for every δ ∈ (δ, 1), there exists
a PCE with discounted payoff equal to u.

The presence of transfers implies that if a member of a blocking coalition antici-
pates punishment, she can be bribed by others to still go along with it. But comparing
Theorem 4 to Theorem 1 reveals that rather than aligning coalition members’ incen-
tives, public transfers actually undermine any existing preference alignment that was

16



present before the transfers. The key idea is that public transfers make the distribu-
tion of utilities within any blocking coalition transparent to all. Therefore, a PCE can
tailor the selection of a scapegoat in a blocking coalition to these transfers so as to
punish the coalition member who benefited the least. Conceptually, players i and j

have misaligned interests (or non-equivalent utilities) when one has to pay transfers to
the other. This misalignment allows one to construct player-specific punishments.9

4.3 Secret Transfers

In light of the analysis above, we ask: what if some coalitions can make secret side-
payments when they block? Could their incentives then be aligned? We view this
question to be of conceptual and practical import given that, in many contexts, trans-
fers within coalitions are not public. For instance, a firm when poaching another firm’s
employees might offer a contract whose terms are observed by the worker and firm
alone. These contracts are often confidential, a point to which we return in Section 5.1
in our discussion of wage transparency. More broadly, groups of players often seek
and find ways to transfer money under the table when defecting from a social arrange-
ment. Our analysis here identifies the benefits that coalitions accrue from making
secret transfers even if their blocking decision is observable.

We consider a setting in which some but not all coalitions can make secret transfers;
S ⊆ C denote the set of coalitions that can. In our leading application, we consider firms
that can offer contracts to workers with private wage terms. A secret side-payment is
observed within a coalition but not outside it. Aligned with this idea, we define the
outcomes that are publicly observed by all parties.

Definition 6. Given the set S ⊆ C and a stage-game outcome o = (a,B, T ) ∈ O, the
public transfers, denoted T p, exclude those made within any blocking coalition in S:

T p
ij =

 # if ∃C ∈ S ∩ B such that {i, j} ⊆ C,

Tij otherwise.

The public component of o, denoted by op, is op := (a,B, T p). For any history h =

(oτ )tτ=0, the public component of h is hp = (oτp)
t
τ=0.

9Safronov and Strulovici (2018) also highlight how transfers can undermine groups in their study
of renegotiation; they show that the ability to punish players for proposals and transfers can cause
inefficient norms to persist.
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The definition stipulates that if coalition C can make secret transfers, then transfers
within it are not recorded in the public history whenever it blocks; instead, those
transfers are recorded as #, indicating that they are missing. In this setting with
imperfect public monitoring, we consider the analog of a perfect public equilibrium
(Abreu, Pearce, and Stacchetti 1990; Fudenberg, Levine, and Maskin 1994).

Definition 7. A plan σ is public if σ(h) = σ(h′) for all h, h′ ∈ H satisfying hp = h′
p.

A public PCE is a public plan σ that constitutes a PCE of the repeated game.

We argue below that secret transfers empower a coalition to act as if it were a
single party. To this end, imagine that some coalition C ∈ S were a unitary actor that
maximizes the total utility

∑
i∈C vi(·) with an effectivity function EC(·). We would

then define its minmax as

uC := min
a∈A

max
a′∈EC(a)

∑
i∈C

vi(a
′) (Coalition C’s minmax)

Treating each coalition C in S in this way would lead to the set of feasible and strictly
S-coalitionally rational payoffs

UCR(S) :=

{
u ∈ U :

ui > vi for every i ∈ N,∑
i∈C ui > uC for every C ∈ S

}
.

The above set derives the set of feasible and “individually” rational payoffs in a fictitious
game in which the set of players is N ∪ S. Our result below shows that this set
characterizes the limits of public PCE.

Theorem 5. For every δ ≥ 0, every public PCE gives each coalition C ∈ S a total
payoff of at least uC and every player i a payoff of at least vi. Moreover, for every
u ∈ UCR(S), there is a δ < 1 such that for every δ ∈ (δ, 1), there exists a public PCE
with a discounted payoff equal to u.

Theorem 5 identifies the significant gains that coalitions accrue from finding a
channel to transfer utility secretly; all those in such a coalition can collectively enjoy
a higher minmax while those outside a secret coalition can be pushed towards their
individually rational payoffs.10 One might view these high coalitional minmaxes as

10Note that Theorem 4 corresponds to the special case of Theorem 5 in which S is empty.
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conveying an “anti-folk” flavor. Indeed, in our applications in Section 5, we show that
secret transfers can reduce the supportable payoff set to the core of the stage game.

To see why Theorem 5 holds, we first explain why each coalition C ∈ S is assured
its minmax. Consider a plan σ and suppose towards a contradiction that coalition C

failed to achieve uC . Were coalition C a unitary actor, it could guarantee a total payoff
uC from executing a long-run plan where it best responds to the default alternative in
each period. An argument similar to the one-shot deviation principle then establishes
that the total utility of members of coalition C must increase by blocking at some
history h. By apportioning that gain across the members of C through secret side-
payments, it can then be assured that each member simultaneously profits from the
block at that history without affecting continuation play.

We turn to why every payoff in UCR(S) can be attained for patient players. Con-
sider the fictitious game in which the set of players is N ∪S. In this game, we directly
construct “player-specific” punishments for each player; one can see that such punish-
ments exist because the payoffs across the players in this fictitious game satisfy the
NEU condition. Using these punishments, the payoff of each player in N ∪ S can be
pushed arbitrarily close to its minmax.

We contrast this result with Theorem 4. Therein, we could crack coalitions by
fine-tuning the selection of the scapegoat to the details of who pays whom. Such an
approach fails here because the continuation play cannot condition the punishment on
these fine details for the coalitions in S. Not only do these scapegoat schemes unravel
but so do any other that pushes the payoff of one of these coalitions below its minmax.

5 Applications

5.1 Labor Market Matching and Wage Transparency

Many practices in labor markets, such as collective wage bargaining and firms’ col-
lusive wage-setting, are fundamentally driven by long-run incentives. We incorporate
these considerations into the canonical model of Kelso and Crawford (1982) [hence-
forth KC82]. In the process, we obtain a new perspective on when and how wage
transparency benefits workers.

In this stage game, the set of players is N := F ∪W , where F is the set of firms
and W is the set of workers. We use f to denote a generic firm, w to denote a generic
worker; i and j denote generic players who could be workers or firms.
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Each firm can hire multiple workers. An assignment ϕ is a mapping on F ∪W such
that (i) every worker w is assigned to a firm or herself, ϕ(w) ∈ F ∪{w}; (ii) every firm
f is assigned to a (potentially empty) set of workers, ϕ(f) ⊆ W ; and (iii) w ∈ ϕ(f)

if and only if ϕ(w) = f . The set of alternatives A comprises all assignments between
firms and workers. A matching is an assignment of workers to firms and a specification
of transfers made between players. Following KC82, we allow non-zero transfers to
occur only between employers and their employees. Therefore, the set of matchings is

M :=
{
(ϕ, T ) ∈ A× T : Tij ̸= 0 only if i = ϕ(j) or i ∈ ϕ(j)

}
.

Each firm f has a revenue function vf : 2W → R, with vf (∅) normalized to 0;
similarly, worker w has a premuneration utility function vw : F ∪ {w} → R, where the
payoff of being unemployed, vw({w}), is normalized to 0. Abusing notation, we use vi to
also denote the utility player i receives from an assignment, so vi(ϕ) = vi(ϕ(i)). Given a
matching (ϕ, T ), player i’s experienced payoff is ui(ϕ, T ) := vi(ϕ)+

∑
j ̸=i Tji−

∑
j ̸=i Tij.

Following KC82, we focus on three kinds of blocking: a worker can reject her match,
a firm can fire all its workers, or a firm and a set of workers choose to match even if
that departs from the original assignment. While none of our results change if other
coalitions of players could also block, we make this assumption to match KC82 and
because it embodies the realistic setting in which all contracting is between a firm and
a set of workers. Formally, let E :=

{
{f} ∪W : f ∈ F ,W ⊆ W

}
denote all essential

coalitions, i.e., those comprising a single firm and a set of workers. If C is a singleton
or essential coalition, then for all ϕ ∈ A, EC(ϕ) = {ϕ, ϕ′},11 where

1. A worker w can reject her match: if C = {w}, then ϕ′(w) = w, and ϕ′(w′) = ϕ(w′)

for all w′ ∈ W\{w},

2. A firm f can fires its workers: If C = {f}, then ϕ′(f) = ∅, and ϕ′(f ′) = ϕ(f ′) for
all f ′ ∈ F\{f}, and

3. A firm f and set of workers W can choose to match: If C = {f} ∪ W , then
ϕ′(f) = W , and ϕ′(f ′) = ϕ(f ′)\W for all f ′ ∈ F\{f}.

This formulation specifies that if an assignment ϕ is blocked by coalition C, the re-
sulting assignment coincides with ϕ apart from the departure made by coalition C. In
other words, all untouched workers remain matched with their assigned partners.

11For all other coalitions, EC(ϕ) = {ϕ}.
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Given that transfers happen only between matched players, those outside of C

make no transfers to those in C if C blocks. This specification adheres to the “budget-
balance” case described in Section 4.1; the mapping {χC}C∈C denotes the transfers
made across players outside of coalition C.

We now state the definitions of profitable blocking and core used in KC82.

Definition 8. A matching (ϕ, T ) is profitably blocked by coalition C if there exists
an alternative assignment ϕ′ ∈ EC(ϕ) and transfers T ′

C = [T ′
ij]i∈C,j∈N such that all in

C are better off from the matching (ϕ′, T ′
C , χ

C(T )):

ui(ϕ
′, T ′

C , χ
C(T )) > ui(ϕ, T ) for all i ∈ C.

A matching (ϕ, T ) is a core allocation if it cannot be profitably blocked by any
coalition. The stage-game core, denoted by K, are the payoffs of core allocations.

KC82 show that if firms’ revenue functions satisfy gross substitutes, the core is
nonempty; we assume the same condition and define it formally in this footnote.12

Having described the stage game, we now consider the implications of repetition,
using the framework and analyses of Section 4. The concept of PCE defined in Defini-
tion 5 naturally extends to this setting, where a plan specifies a stage-game matching
at every history. The set of feasible payoffs in this repeated game is UM := co

({
u ∈

Rn : ∃(ϕ, T ) ∈ M such that u = u(ϕ, T )
})

. Player i’s individual minmax payoff is
vi = 0, which is achieved through a matching that ostracizes her. Thus, the set of
feasible and individually rational payoffs is UM

IR :=
{
u ∈ UM : ui > 0 for all i ∈ N

}
.

Public vs. Private Wages. The set of matchings that can be supported in the
repeated game hinges on whether past wage terms are publicly or privately observed.
In the former, we find that many outcomes may be supported; in the latter, we see a
collapse of intertemporal incentives leading to only payoffs in the core being tenable.

Suppose all transfers are public. Then, an argument identical to Theorem 4’s yields
that all feasible and individually rational payoffs can be supported for patient players.

12For a vector of wages from firm f , Tf = (Tfw)w∈W , define Chf (Tf ) := argmaxW⊆W(vf (W ) −∑
w∈W Tfw). For every set of workers W and pair of wage vectors Tf and T ′

f such that T ′
fw ≥ Tfw for

all w ∈ W , define E(W,Tf , T
′
f ) := {w ∈ W : T ′

fw = Tfw}. Firm f ’s revenue function satisfies gross
substitutes if Ŵ ∈ Chf (Tf ) implies that there exists Ŵ ′ ∈ Chf (T

′
f ) such that E(Ŵ , Tf , T

′
f ) ⊆ Ŵ ′.
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Proposition 1. For every δ ≥ 0, every PCE gives each player i a payoff of at least
0. Moreover, for every u ∈ UM

IR , there is a δ < 1 such that for every δ ∈ (δ, 1), there
exists a PCE with discounted payoff equal to u.

Although we assume gross substitutes to maintain comparability with KC82, Propo-
sition 1 itself does not require gross substitutes or the absence of externalities. Thus,
even if the stage-game core is empty, there exist stable schemes when players are
sufficiently patient.13

Now suppose each firm can hire and offer private wage terms to a group of workers.
Formally, the set of secret coalitions, S, includes all essential coalitions, E . In this
setting, we obtain a conclusion sharper than Theorem 5: all payoff vectors outside the
core are untenable regardless of the players’ patience.

Proposition 2. Suppose the set of essential coalitions E can make secret transfers.
For every δ ≥ 0, a public PCE supports a discounted payoff vector if and only if that
payoff vector is in K.

Proposition 2 is an anti-folk theorem that asserts that empowering essential coali-
tions to make secret transfers cripples a PCE’s ability to go beyond the stage-game
core. The “if” direction is immediate as the infinite repetition of a core allocation con-
stitutes a public PCE. For the “only if” direction, observe that by Theorem 5, every
essential coalition is assured its minmax payoff in a public PCE. In other words, every
firm f and group of workers W must achieve a total utility of at least what they would
get from matching together, namely, vf (W ) +

∑
i∈W vw(f), which is this coalition’s

value. In our proof, we show that all payoff vectors that assure that each coalition
obtains at least its value lie in the stage-game core.14

Who Benefits from Wage Transparency? To answer this question, we specialize
to a setting in which workers are homogeneous (which KC82 also consider). Suppose
that all workers have the same payoff function, vw(f) = λ(f) for each firm f and

13In this sense, our results offer a microfoundation for this payoff set that complements that of
Rostek and Yoder (2024); they develop notions of strategic consistent choices and beliefs for a static
game that can render some outcomes stable even if the core is empty.

14We comment here on a subtle detail of our analysis. In the setup of Section 4.3, the public
history does not record wage offers only when a coalition blocks. One may be interested in the setting
in which wages are never recorded in the public history, both on- and off-path. Proposition 2 would
remain true in that setting: the “if” direction holds as a PCE can support core allocations without
observing any past wage offers and the ”only if” direction holds because making all wage offers private
imposes a further restriction on the public PCE.
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worker w. Additionally, each firm’s revenue depends only on the number of workers it
hires: vf (W ) = ṽf (|W |). Let ρ(f, l) := λ(f)+ ṽf (l)− ṽf (l−1) be the surplus generated
from assigning the lth worker to firm f . We continue to assume that firm revenues
satisfy gross substitutes, which KC82 show translates into a condition on diminishing
marginal returns: ρ(f, l) is then weakly decreasing in l for each f .

In this setting, the assignment ϕ∗ that maximizes total social surplus is found by
greedily assigning workers to firm slots in order of their contribution to total surplus;
henceforth, we refer to ϕ∗ as the efficient assignment. Formally, let L := |W| be the
total labor supply and η(ℓ) be the ℓth highest value of {ρ(f, l) : f ∈ F , l ≥ 1} for ℓ in
{1, . . . , L}, which represents the marginal value of assigning the ℓth worker optimally.
To simplify our exposition, we assume that the set {ρ(f, l) : f ∈ F , l ≥ 1} has no ties
and excludes 0; assignment ϕ∗ then fills “slots” {(f, l) : ρ(f, l) ≥ max{0, η(L)}} leaving
all others vacant. Finally, we assume that it would be inefficient for a single firm to
hire all workers so that each firm faces some competition.

The set of utilities compatible with assignment ϕ∗ in which each player obtains more
than her minmax is U+ := {ũ = u(ϕ∗, T ) : (ϕ∗, T ) ∈ M, ũi > 0 for all i ∈ F ∪ W}.
Among these, we consider a specific surplus division in which all workers obtain an
identical payoff. Let η(L + 1) be the (L + 1)th highest value of ρ(f, l) assuming that
there were an additional worker in the economy. Then we define:

U∗ := {ũ ∈ U+ : max{0, η(L+ 1)} ≤ ũw = ũw′ ≤ max{0, η(L)} for all w,w′ ∈ W}.

In these surplus divisions, each worker obtains a net utility of approximately the
“marginal product” of the last employee in the economy while firms are residual
claimants. We show that K = U∗, which yields the following conclusion.

Proposition 3. If wages are public, for each u ∈ U+, there exists δ < 1 such that for
every δ ∈ (δ, 1), there exists a PCE with discounted payoff equal to u. By contrast, if
wages are private, for every δ ≥ 0, the set of payoffs supported by public PCEs is U∗.

Proposition 3 asserts that any surplus division from the efficient assignment ϕ∗

in which individual rationality conditions hold can be supported if wages are public.
Firms could collude to extract nearly all surplus from workers; alternatively, workers
can collectively bargain to retain almost the entire surplus. By contrast, if wages
are private, workers accrue the value of the marginal product of the least productive
employee, and firms capture the remaining surplus.
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Figure 2. (A) and (B) show the distribution of surplus under private wages when the marginal pro-
ductivity falls slowly or quickly. In the latter case, workers have more to gain from wage transparency.

Given Proposition 3, workers favor wage transparency if they are plentiful—i.e.,
η(L) < 0—or their marginal product falls quickly. Without transparency, workers
compete intensely for slots and thereby drive their earnings to near 0. By contrast,
wage transparency enables them to use collective bargaining to obtain higher wages
for them all. In such a scheme, were a firm to try to poach workers in a way that is
mutually profitable, a PCE would deter workers from accepting those offers by reverting
to the stage-game core from the next period onwards. Thus, workers recognize that the
future promise of high wages—and the continued success of their collective bargaining
efforts—requires them to reject offers that are tempting today.

By contrast, if workers are scarce or the marginal product of workers falls slowly—
i.e., η(1) ≈ η(L)—it is firms who favor wage transparency. All PCEs under private
wages result in high wages, as firms compete heavily for workers. Wage transparency
allows firms to collusively suppress wages, with all of them setting low wages and
agreeing not to poach each other’s workers. Such an agreement is viable given the
continuation play in which poaching today triggers a “salary war” tomorrow.

We depict this prediction in Figure 2: (A) shows the distribution of worker and firm
surplus under private wages when the marginal product of labor falls slowly and (B)
shows the same when the marginal product falls quickly. As the figure shows, workers
are worse off absolutely and relatively in the latter case. Were wages transparent,
workers or firms could obtain better terms. In (A), workers have little to gain but
much to lose from wage transparency as firms could then suppress wages; by contrast,
in (B), it is workers who can use wage transparency to secure a larger share of the pie.
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Formalizing this comparative statics prediction, consider two markets M1 and M2

that are identical in all respects but one: they differ in the productivity of labor as
captured in firms’ revenues. In market i, firm f ’s revenue function is ṽf,i, and the
marginal value of assigning worker ℓ optimally is then ηi(ℓ). We assume that labor is
valuable in each market, in that ηi(L + 1) > 0 for each i, and that the two markets
accrue the same gain from hiring the first worker, η1(1) = η2(1).

Definition 9. Market M2 exhibits more steeply decreasing returns to labor than
market M1 if for every ℓ in {1, . . . , L},

η2(ℓ)− η2(ℓ+ 1) ≥ η1(ℓ)− η1(ℓ+ 1).

If the inequality is strict for some ℓ, then M2 exhibits strictly more steeply decreasing
returns to labor.

In each market, given gross substitutes, the marginal product of labor falls with
each incremental worker; Definition 9 asserts that this fall is always more pronounced
in M2. Modulo integer issues, this definition translates into a standard condition on
the second derivative of the total product being more negative in M2.15

We turn to the implications for how surplus is divided between workers and firms.
Let Πi :=

∑L
ℓ=1 ηi(ℓ) denote the total surplus from the efficient assignment in market

Mi. Let ΠW
i := [Lηi(L + 1), Lηi(L)] denote the set of potential workers’ total surplus

under private wages; recall from Proposition 3 that each worker is paid the same, which
is around the marginal product of the least productive worker. Firms capture the gap
between total surplus and that taken by workers; ΠF

i denotes the set of potential firms’
total surplus. We compare these surplus divisions between the two markets; when
comparing sets, we use the strong set order denoted ≽SSO.

Proposition 4. Suppose M2 exhibits more steeply decreasing returns to labor than M1.
Then the following hold about the distribution of surplus under private wages:

(a) The total surplus in market M1 is higher: Π1 ≥ Π2.

(b) Worker surplus in market M1 must be higher: ΠW
1 ≽SSO ΠW

2 .

(c) Firm surplus in market M1 must be lower: ΠF
1 ≼SSO ΠF

2 .
15The “total product” in each market with ℓ units of labor would be Π̂i(ℓ) :=

∑ℓ
l=1 ηi(l). As the

first worker in markets M1 and M2 generates the same gain, Definition 9 implies that Π̂2(·) must be
a concave transformation of Π̂1(·), which is tantamount to the standard Arrow-Pratt comparison.
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Furthermore, if M2 exhibits strictly more steeply decreasing returns to labor, then all
the orders above are strict.

Proposition 4 identifies an interesting property: while a more steeply decreasing
returns reduces both total and worker surplus under private wages, it has a more
pronounced effect on the latter. Hence, as seen in (c), the residual surplus captured by
firms is actually higher in M2. If wage transparency enables workers to capture firms’
profits, then workers have more to gain (and less to potentially lose) in M2 than M1.

5.2 Distributive Politics

Herein, we study a repeated distribution problem, in which the players repeatedly
choose how to divide a dollar. Such division problems feature prominently in the
political economy literature (e.g. Baron and Ferejohn 1989) and relate to the simple
games (Von Neumann and Morgenstern 1945) studied in cooperative game theory. The
set of alternatives A are divisions of the dollar, {a ∈ RN

+ :
∑

i∈N ai = 1}, where player
i’s payoff from alternative a is ai. Divisions are chosen by a “winning” coalition: W is
a set of coalitions such that for every coalition C in W , EC(a) = A for every division
a, and for every coalition C not in W , EC(a) = {a}. As standard, W is monotone and
proper.16 A simple-majority rule protocol corresponds to W comprising all coalitions
that have at least (n + 1)/2 players. This formulation also allows for veto power: if
a player belongs to every winning coalition (∩C∈WC), then effectively no block can
happen without her approval. We denote the set of veto players by D := ∩C∈WC.

Bernheim and Slavov (2009) approach this setting with simple majority rule in
mind, emphasizing how Dynamic Condorcet Winners exist although the stage game
lacks a Condorcet Winner. We focus instead on settings with at least one veto and one
non-veto player, and in which veto players are not dictators (D /∈ W). Absent history
dependence, these settings are prone to highly unequal splits: the veto players steal
the entire dollar, emerging as de facto dictators of the game. Formally, the set of core
alternatives of the stage game is K := {a ∈ RN

+ :
∑

i∈D ai = 1}. The logic is that any
division that gives a positive share to a non-veto player would be profitably blocked
by a winning coalition who would extract that share and divide it among themselves.

Against this backdrop, we evaluate how history dependence can counter this ten-
dency towards unequal splits. Consider a three-player example in which player 1 alone

16In other words, if C is in W, then W contains every superset of C but not its complement.
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(A) Perfect monitoring for δ > 1/2 (B) Secret transfers between 1 and 2

Figure 3. (A) depicts the set of supportable outcome. The red region depicts payoffs supported by
core-reversion, and the blue region illustrates those from other PCE. (B) shows the set of supportable
payoffs once coalition {1, 2} can make secret transfers; player 3 then obtains 0.

has veto power; however, she needs the support of at least one other player to block. In
the core of this stage game, player 1 captures the entire dollar. Nevertheless, relatively
simple schemes in the repeated game can promote equal splits. Consider a core rever-
sion plan that prescribes

(
1
3
, 1
3
, 1
3

)
every period if that has been the division up to now

and switches to the stage-game core otherwise. On the equilibrium path, even if player
1 offers the entire dollar to either player 2 or 3, neither finds it profitable to block with
her if (1 − δ)(1) + δ(0) ≤ 1

3
. Going further, core-reversion can support any division

in the triangle formed by the vertices {(2δ − 1, 1 − δ, 1 − δ), (0, δ, 1 − δ), (0, 1 − δ, δ)},
which converges to the unit simplex as δ → 1.

One could go beyond core-reversion to characterize all PCE payoffs. Because the
game is convex and exhibits default-independent power, Theorem 2 implies that all
PCE payoffs can be supported by stationary PCE. Using this result, we find that if
players are sufficiently patient, then every payoff in which each non-veto player obtains
up to δ can be supported in a PCE. We depict these outcomes in Figure 3(A).

These schemes collapse if the veto player can make and receive secret side-payments.
Suppose players 1 and 2 can transfer utility under the table. Theorem 5 implies that
player 3 then obtains 0 in all PCE payoffs, as illustrated in Figure 3(B). Even worse,
player 1 takes the entire dollar in every period if she can make secret side-payments
with each player.

These intuitions generalize to n-player games in which there are at least one veto
and one non-veto player, and veto players are not dictators. We call a coalition C a
minimal winning coalition if C is a winning coalition and every proper subset is not.
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Proposition 5. The following hold:

(a) Absent secret transfers, there exists δ ≥ 0 such that if δ ≥ δ, the set of supportable
payoffs are those that give at least (1− δ) to each winning coalition.

(b) A winning coalition C obtains the entire dollar in every period in every PCE,
regardless of δ, if it can make secret transfers.

(c) The veto players obtain the entire dollar in every period in every PCE, regardless
of δ, if every minimal winning coalition can make secret transfers.

Proposition 5(a) highlights how egalitarian schemes can be supported by history
dependence. We use Theorem 2 to obtain this fixed discount factor characterization; it
turns out that δ = 0 if there are at least two veto players so the characterization then
is complete. Proposition 5(b) and (c) elucidate how secret side-payments destabilize
egalitarian schemes: the veto players regain de facto dictatorial power if every minimal
winning coalition can make secret transfers.

6 Conclusion
This paper develops a portable framework for coalitional repeated games, which enables
us to evaluate the role of dynamic incentives in coalitional behavior across a broad range
of settings. Our analysis uncovers the importance of alignment: history dependence
keeps coalitions in line if coalition members’ interests are even slightly misaligned.
Simple scapegoat schemes then deter coalitional deviations. However, if players in a
coalition have completely aligned interests, they can secure a higher minmax payoff by
effectively acting as a unitary agent.

This perspective delivers additional insights. Strongly symmetric schemes do not
deter coalitional deviations, pushing towards the use of asymmetric punishments. Being
able to transfer utility alone does not align interests; to the contrary, publicly observed
transfers create a wedge between coalition partners and thereby undermine coalitions.
However, the ability to make transfers under the table forges strong ties: a coalition
that can do so is assured a high net payoff across PCE.

In our applications, these secret side-payments cripple intertemporal incentives,
reducing the set of supportable outcomes to the stage-game core. We use these re-
sults to identify conditions under which workers favor wage transparency in repeated
labor-market matching. We also study repeated negotiations to evaluate how history
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dependence can counter the tendency of veto players to become de facto dictators.
Our setup models a purely repeated game in which choices today have no direct

bearing on future payoffs. A natural direction for future research would study settings
like dynamic public good provision, natural resource depletion, or experimentation in
which actions in one period directly impact options (or beliefs) in the next.17
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A Appendix
The main appendix contains proofs for Theorems 1, 2, 3, and 5. All other proofs are
in the Supplementary Appendix. Throughout our analysis, we use sequences of play to
convexify payoffs, following standard arguments from Sorin (1986) and Fudenberg and
Maskin (1991). Below, we reproduce the statement that we invoke in our arguments.

Lemma 1. (Lemma 2 of Fudenberg and Maskin 1991) Let X be a convex
polytope in Rn with vertices x1, . . . , xK. For all ϵ > 0, there exists a δ < 1 such that for
all δ < δ < 1, and any x ∈ X, there exits a sequence {xτ}∞τ=0 drawn from {x1, . . . , xK},
such that (1− δ)

∑∞
τ=0 δ

τxτ = x and at any t, ||x− (1− δ)
∑∞

τ=t δ
τ−txτ || < ϵ.

A.1 Proof of Theorem 1 on p. 11

A Preliminary Result. A blocking plan by coalition C from a plan σ is a function
α : H → A such that α(h) ∈ EC(σ(h)) for every history h ∈ H. After each history h,
the blocking plan α generates a path (α(h), α(h, α(h), {C}), . . .) that is distinct from
the one generated by σ. We use Ui(h|α) to denote player i’s normalized discounted
payoff from that path. The blocking plan α is profitable if there exists a history h such
that Ui(h|α) > Ui(h|σ) for all i ∈ C. Below, we say that a coalition is in the alignment
partition if it corresponds to a coalition C(i) for some player i.
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Lemma 2. If σ is a PCE, then no coalition in the alignment partition has a profitable
blocking plan.

Proof. Consider a plan σ from which coalition C(i∗) has a profitable blocking plan α for
some i∗ ∈ N . In particular, there exists a history h ∈ H such that Ui(h|α) > Ui(h|σ)
for every i ∈ C(i∗). We show that coalition C(i∗) must then have a profitable block
from the plan σ at some history, so σ is not a PCE.

Since the set of alternatives A is compact and v : A → Rn is continuous, the plan
σ has bounded continuation values for all players. Given discounting, the standard
one-shot deviation principle applies. Therefore, there exists a history ĥ ∈ H such that

(1− δ)ui∗
(
α(ĥ)

)
+ δUi∗

(
ĥ, α(ĥ), {C(i∗)}

∣∣σ) > Ui∗(ĥ|σ).

Since players in C(i∗) have equivalent payoffs, for each j ∈ C(i∗) there exists λji∗ > 0

and µji∗ ∈ R such that uj(a) = λji∗ui∗(a)+µji∗ and all alternatives a ∈ A; in addition,
for every j ∈ C(i∗), the discounted payoffs satisfy Uj(h|σ) = λji∗Ui∗(h|σ) + µji∗ at
every history h ∈ H. Substituting into the inequality above, we have

(1− δ)uj

(
α(ĥ)

)
+ δUj

(
ĥ, α(ĥ), {C(i∗)}

∣∣σ) > Uj(ĥ|σ) for all j ∈ C(i∗).

Therefore, coalition C(i∗) has a profitable block at history ĥ.

Proof of Theorem 1.
Part 1: For every δ ≥ 0, every PCE gives each player i a payoff of at least v◦i .
We establish this claim by proving its contrapositive: let σ be a plan, and suppose
there exists a player i∗ that satisfies Ui∗(∅|σ) < v◦i∗ . We show that σ cannot be a PCE.
Given Lemma 2, it suffices to show that coalition C(i∗) has a profitable blocking plan.

Consider the following blocking plan α for coalition C(i∗): at every history h,
coalition C(i∗) chooses its myopic best response to the default alternative, α(h) ∈
argmaxa′∈EC(i∗)(σ(h))

vi∗(a
′). By the definition of v◦i∗ , vi∗(α(h)) ≥ v◦i∗ for every history

h, so player i∗’s continuation value from period 0 must be higher: Ui∗(∅|α) > Ui∗(∅|σ).
Given that all players j ∈ C(i∗) have equivalent utilities, Uj(∅|α) > Uj(∅|σ) for all
j ∈ C(i∗), so α is a profitable blocking plan for coalition C(i∗).

Part 2: For every v ∈ VCR, there is a δ < 1 such that for every δ ∈ (δ, 1), there exists
a PCE with discounted payoff equal to v.
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Fix v∗ ∈ VCR. First, observe that for any pair of players i, j such that j /∈ C(i), their
payoffs satisfy the non-equivalent utilities (NEU) condition. By Lemma 1 and Lemma
2 of Abreu, Dutta, and Smith (1994), we can find coalition-specific punishments for
v∗: there exist payoff vectors {vC(i)}ni=1 ⊆ VCR such that v

C(i)
i < v∗i for all i ∈ N , and

v
C(i)
i > v

C(i)
j for all j /∈ C(i).

Second, let us define coalitional minmaxing alternatives: for each coalition C(i), let
a◦C(i) ∈ argmina∈A maxa′∈EC(i)(a) vj(a

′) for some j ∈ C(i)—note that the specific choice
of j ∈ C(i) in the definition does not matter given the equivalent payoffs within C(i)—
as the alternative that will be used to minmax coalition C(i). Since A is compact,
v is continuous, and EC(i)(·) is continuous and compact-valued, by Berge’s maximum
theorem, a◦C(i) is well-defined for each i ∈ N . By construction, vi(a′) ≤ v◦i for all i ∈ N

and a′ ∈ EC(i)(a
◦
C(i)) and in particular, vi(a◦C(i)) ≤ v◦i .

Given these payoffs and punishments, let κ ∈ (0, 1) be such that for every κ̃ ∈ [κ, 1],
the following is true for every i:

(1− κ̃)vi(a
◦
C(i)) + κ̃v

C(i)
i > v◦i (1)

For every i ∈ N and j /∈ C(i): (1− κ̃)vj(a
◦
C(i)) + κ̃v

C(i)
j > (1− κ̃)v◦j + κ̃v

C(j)
j (2)

Inequality (1) implies that every player j ∈ C(i) is willing to bear the cost of
vj(a

◦
C(i)) with the promise of transitioning into their coalition-specific punishment

rather than staying at their coalitional minmax, where the promise is discounted at κ̃.
Similarly, inequality (2) implies that player j is willing to bear the cost of minmaxing
any coalition with whom j does not share equivalent utilities, given the promise of
transitioning into coalition C(i)’s specific punishment rather than her own, when the
post-minmaxing phase payoffs are discounted at κ̃. Each inequality holds at κ̃ = 1 for
all i and j /∈ C(i). Since the set of players is finite, there exists a value of κ ∈ (0, 1)

such that the inequality holds for all κ̃ ∈ [κ, 1], i ∈ N and j /∈ C(i).
Let L(δ) :=

⌈
log κ
log δ

⌉
where ⌈·⌉ is the ceiling function. Observe that δL(δ) ∈ [δ

log κ
log δ

+1, δ
log κ
log δ ] =

[δκ, κ]. Therefore, limδ→1 δ
L(δ) = κ.

Since {vC(i)}ni=1 ∪ {v∗} ⊆ co{v(a) : a ∈ A} ⊆ Rn, by Carathéodory’s theorem,
there exist {â1, . . . , âK} ⊆ A for some integer K, such that {vC(i)}ni=1 ∪ {v∗} ⊆
co{v(âk) : k = 1, . . . , K}. Define I := {C(i)}ni=1, and Î := {C(i)}ni=1∪{∗}. Lemma 1
then guarantees that for any ϵ > 0, there exists δ ∈ (0, 1) such that for all δ ∈
(δ, 1), there exist sequences

{
{aS,τ}∞τ=0 : S ∈ Î

}
such that for each S ∈ Î and t,
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(1− δ)
∑∞

τ=0 δ
τv(aS,τ ) = vS and

∣∣∣∣vS − (1− δ)
∑∞

τ=t δ
τv(aS,τ )

∣∣∣∣ < ϵ. We fix an

ϵ < (1− κ)min
{

min
S∈Î,i∈N\S

(vSi − v
C(i)
i ), min

i∈N
v
C(i)
i − v◦i

}
,

and given that ϵ, consider δ exceeding the appropriate δ.

We now describe the plan that supports v∗. Consider the automaton (W,w(∗, 0), f, γ):

• W :=
{
w(d, τ )|d ∈ Î, τ ≥ 0

}
∪ {w(S, τ)|S ∈ I, 0 ≤ τ < L(δ)} is the set of

possible states and w(∗, 0) is the initial state;

• f : W → O is the output function, where f(w(d, τ )) = (ad,τ , ∅) and f(w(S, τ)) =

(a◦S, ∅).

• γ : W × O → W is the transition function. For any collection of blocking
coalitions B ∈ B, let Ĉ(B) = ∪C∈BC denote their union. For states of the form
w(d, τ ), the transition is

γ
(
w(d, τ ), (a,B)

)
=

w(C(j∗), 0) if B ̸= ∅ , where j∗ = min Ĉ(B)

w(d, τ + 1) otherwise

For states of the form {w(S, τ)|S ∈ I, 0 ≤ τ < L(δ)− 1},

γ
(
w(S, τ), (a,B)

)
=


w(C(j∗), 0) if Ĉ(B) ⊈ S , where j∗ = min(Ĉ(B)\S)

w(S, 0) if Ĉ(B) ⊆ S and Ĉ(B) ̸= ∅

w(S, τ + 1) otherwise

For states of the form {w(S, L(δ)− 1)|S ∈ I}, the transition is

γ
(
w(S, L(δ)− 1), (a,B)

)
=



w(C(j∗), 0) if Ĉ(B) ⊈ S,

where j∗ = min(Ĉ(B)\S)

w(S, 0) if Ĉ(B) ⊆ S and Ĉ(B) ̸= ∅

w(S, 0) otherwise

The plan represented by the above automaton yields payoff profile v∗. By construction,
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∣∣∣∣vd − V (w(d, τ ))
∣∣∣∣ < ϵ for all (d, τ ); in addition, for τ = 0, 1, . . . , L(δ),

V (w(S, τ)) = (1− δL(δ)−τ )v(a◦S) + δL(δ)−τV (w(S, 0)).

Below, we show that this plan is a PCE by showing that no coalition can profitably
block in any state of this automaton.

States of the form w(d, τ ): Set b > maxa∈A,i∈N vi(a). Consider coalition C blocking
and implementing the alternative a. Let j∗ = minC. For all τ , without the blocking j∗

obtains a payoff greater than vdj∗−ϵ. By participating in the blocking, j∗ obtains a payoff
less than (1− δ)b+ δVj∗(w(C(j∗), 0)) = (1− δ)b+ δ[(1− δL(δ))vj∗(a

◦
C(j∗)) + δL(δ)v

C(j∗)
j∗ ].

The blocking is not profitable if the preceeding term is no more than vdj∗ − ϵ. We prove
that this is true in two separate cases.

First consider the case where d ∈ Î\{C(j∗)}. Observe that

lim
δ→1

(1− δ)b+ δ
[
(1− δL(δ))vj∗(a

◦
C(j∗)) + δL(δ)v

C(j∗)
j∗

]
= lim

δ→1

[
(1− δL(δ))vj∗(a

◦
C(j∗)) + δL(δ)v

C(j∗)
j∗

]
< v

C(j∗)
j∗ ,

where the inequality follows from vj∗(a
◦
C(j∗)) ≤ v◦j < v

C(j∗)
j∗ . Because ϵ by construction

is strictly less than vdj∗ − v
C(j∗)
j∗ , it follows that payoff from blocking is less than vdj∗ − ϵ

when δ is sufficiently large.
Now suppose that d = C(j∗). The blocking payoff being less than v

C(j∗)
j∗ − ϵ can be

re-written as (1− δ)(b− v
C(j∗)
j∗ ) + ϵ ≤ δ(1− δL(δ))(v

C(j∗)
j∗ − vj∗(a

◦
C(j∗))). As δ → 1, the

LHS converges to ϵ. Because limδ→1 δ
L(δ) = κ, the RHS converges to (1 − κ)(v

C(j∗)
j∗ −

vj∗(a
◦
C(j∗))). By definition of ϵ, the above inequality holds, and therefore, no coalition

can profitably block if δ is sufficiently high.

States of the form w(S, τ): We first consider the case where C ⊆ S and C ̸= ∅.
Choose an arbitrary i ∈ C and we will show that the blocking is not profitable for i.
By the definition a◦S, coalition C cannot generate a payoff of more than v◦i for player
i, so i finds the blocking to be unprofitable if

(1− δL(δ)−τ )vi(a
◦
S) + δL(δ)−τvSi ≥ (1− δ)v◦i + δ(1− δL(δ))vi(a

◦
S) + δL(δ)+1vSi . (3)

Because vSi > v◦i ≥ vi(a
◦
S), it suffices to show that the inequality above holds at τ = 0.

Re-arranging terms yields that (1− δ)(1− δL(δ))vi(a
◦
S)+(1− δ)δL(δ)vSi ≥ (1− δ)v◦i , and
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then dividing by (1− δ) yields (1− δL(δ))vi(a
◦
S) + δL(δ)vSi ≥ v◦i . Let us verify that this

inequality holds for sufficiently high δ. Taking δ → 1 yields (1), which is true. Hence
(3) holds for sufficiently high δ.

Next we consider the case where C ⊈ S. By construction, j∗ /∈ S. Player j∗ finds
blocking to be unprofitable if

(1− δL(δ)−τ )vj∗(a
◦
S)+ δL(δ)−τvSj∗ ≥ (1− δ)b+ δ(1− δL(δ))vj∗(a

◦
C(j∗))+ δL(δ)+1v

C(j∗)
j∗ . (4)

We prove that this inequality is satisfied if δ is sufficiently high. Examining the LHS,
observe that for all τ such that 0 ≤ τ ≤ L(δ)− 1,

lim
δ→1

[
(1− δL(δ)−τ )vj∗(a

◦
S) + δL(δ)−τvSj∗

]
= lim

δ→1

[(
1− κ

δτ

)
vj∗(a

◦
S) +

κ

δτ
vSj∗

]
= (1− κ̃)vj∗(a

◦
S) + κ̃vSj∗

for some κ̃ ∈ [κ, 1]. Examining the RHS of (4), observe that

lim
δ→1

[
(1− δ)b+ δ(1− δL(δ))vj∗(a

◦
C(j∗)) + δL(δ)+1v

C(j∗)
j∗

]
= lim

δ→1

[
(1− δL(δ))vj∗(a

◦
C(j∗)) + δL(δ)v

C(j∗)
j∗

]
= (1− κ)vj∗(a

◦
C(j∗)) + κv

C(j∗)
j∗ ≤ (1− κ)v◦j∗ + κv

C(j∗)
j∗ ≤ (1− κ̃)v◦j∗ + κ̃v

C(j∗)
j∗ ,

where the first equality follows from taking limits, the second from limδ→1 δ
L(δ) = κ,

the first weak inequality follows from vj∗(a
◦
C(j∗)) ≤ v◦j∗ , the second weak inequality

follows from κ̃ ≥ κ and v◦j∗ < v
C(j∗)
j∗ . Since κ̃ ∈ [κ, 1] and j∗ /∈ S, (2) delivers that

(1− κ̃)vj∗(a
◦
S) + κ̃vSj∗ is strictly higher than (1− κ̃)v◦j∗ + κ̃v

C(j∗)
j∗ . This term guarantees

that (4) holds for sufficiently high δ.

A.2 Proof of Theorem 2 on p. 13

Since the stage game exhibits default-independent power, the set vC(EC(a)\{a}) is
independent of the default alternative a for each coalition C; we can therefore define
D(C) := vC(EC(a)\{a}) for some a ∈ A. To study stationary PCEs, we define the ana-
logue of the self-generation map (Abreu, Pearce, and Stacchetti 1990). In a stationary
PCE, at any history the prescribed current-period payoff and continuation value are
the same. Accordingly, we define the stationary self-generation map as follows. For
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any set Y ⊆ V ⊆ Rn, define

Φδ(Y ) :=
{
y ∈ Y : ∀C ∈ C and zC ∈ D(C), ∃y′ ∈ Y and i ∈ C s.t. yi ≥ (1−δ)zi+δy′i

}
.

The self-generation map identifies the set of discounted payoffs that are supportable
when continuation payoffs must lie in the set Y , so for any blocking coalition C con-
templating payoff zC ∈ D(C) for its members, there is an alternative continuation
payoff y′ that deters C from doing so.

Lemma 3. If Y ⊆ V and Y ⊆ Φδ(Y ), then every y ∈ Y can be supported by a
stationary PCE.

Proof. Consider any y ∈ Y ⊆ Φδ(Y ). We will construct a stationary PCE σ :⋃∞
τ=0 Hτ → A such that U(∅|σ) = y. Since y ∈ V , there exists ã ∈ A such that

v(ã) = y. Define σ(∅) = ã. We will extend σ’s domain to
⋃∞

τ=0 Hτ while making sure
that for all τ ≥ 0, hτ ∈ Hτ , σ satisfies (i) stationarity: σ(hτ , σ(hτ ), ∅) = σ (hτ ) and
v(σ(hτ )) ∈ Y , and (ii) no profitable block: for all C ∈ C and a′ ∈ EC(σ(h

τ )), there
exists i ∈ C such that vi(σ(h

τ )) ≥ (1− δ)vi(a
′) + δvi(σ(h

τ , a′, {C})).
Since y ∈ Φδ(Y ), we know that for all C ∈ C, and a ∈ EC(ã), there exists y′[a, C] ∈

Y such that yi ≥ (1− δ)vi(a) + δy′i[a, C] for some i ∈ C. Furthermore since y′[a, C] ∈
Y ⊆ V , this implies the existence of a′[a, C] ∈ A such that y′[a, C] = v(a′[a, C]). We
extend σ to the domain {∅} ∪ H1 as follows: σ(ã, B) = ã if B is either an empty
set or comprises more than one coalition; and σ(a, {C}) = a′[a, C] for all C ∈ C and
a ∈ EC(ã). Clearly, this satisfies properties (i) and (ii) for τ = 0.

Now we complete the definition of the plan σ through induction on t. Fix t > 1,
and assume we’ve defined the function σ :

⋃t−1
τ=0 Hτ → A satisfying properties (i)

and (ii) for τ = 0, . . . , t − 1 and all hτ ∈ Hτ . Consider any ht−1 ∈ Ht−1. Since
v(σ(ht−1)) ∈ Y ⊆ Φδ(Y ), we know that for all C ∈ C, and a ∈ EC(σ(h

t−1)), there
exists yht−1

[a, C] ∈ Y such that vi(σ(ht−1)) ≥ (1−δ)vi(a)+δyh
t−1

i [a, C] for some i ∈ C.
In addition, since yh

t−1
[a, C] ∈ Y ⊆ V , this implies the existence of ah

t−1
[a, C] such

that yh
t−1

[a, C] = v(ah
t−1

[a, C]). Extend σ to the domain Ht by defining σ(ht−1, a, B)

as follows: σ(ht−1, σ(ht−1), B) = σ(ht−1) if B is either an empty set or comprises more
than one coalition; and σ(ht−1, a, {C}) = ah

t−1
[a, C] for all ht−1 ∈ Ht−1, C ∈ C and

a ∈ EC(σ(h
t−1)). Note that, by construction, the function satisfies properties (i) and

(ii) for τ = 0, . . . , t and hτ ∈ Hτ . This completes the induction step.
By property (i), σ is stationary, which implies that at any history ht it delivers the
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discounted payoff U(ht|σ) = v(σ(ht)). In particular, U(∅|σ) = y, as required. Property
(ii) then implies that σ is a PCE.

Proof of Theorem 2. We show that any payoff that can be supported by a PCE
can be supported by a stationary PCE (given that the converse holds by definition).
Take a PCE σ, and let U(σ) := {U(h|σ) : h ∈ H} denote the set of continuation values
associated with σ. Since V is convex, it follows that U(σ) ⊆ V . Given Lemma 3, it
suffices to show that U(σ) ⊆ Φδ(U(σ)).

Consider any y ∈ U(σ) and let ht be some t-history such that U(ht|σ) = y. Since
σ is a PCE, we know that for any C ∈ C and any a′ ∈ EC(σ(h

t)), there exists y′ ∈
U(σ) and i ∈ C such that (1 − δ)vi(a) + δy′i ≤ yi. Since the stage game exhibits
default-independent power, this is equivalent to the statement that for all C ∈ C and
zC ∈ D(C), there exists y′ ∈ U(σ) and i ∈ C such that yi ≥ (1 − δ)zi + δy′i, which
implies U(σ) ⊆ Φδ(U(σ)). The claim then follows from Lemma 3.

A.3 Proof of Theorem 3 on p. 14

A Preliminary Result. Let US denote the set of discounted payoff profiles from
strongly symmetric PCEs. The following lemma is useful for proving Theorem 3.

Lemma 4. If US is nonempty, then US is the singleton set {v̂}.

Proof. Suppose US is nonempty. Since players accrue identical payoffs from symmetric
action profiles, we have ui = uj for all players i, j and u ∈ US. Let x̂ := maxa∈AS v1(a)

be the highest feasible symmetric payoff, so v̂ = (x̂, . . . , x̂). Let x := inf{x : (x, . . . , x) ∈
US} denote the lowest symmetric PCE payoff.

Consider a sequence {(xk, . . . , xk)}∞k=1 ⊆ US that converges to (x, . . . , x) and let σk

be the PCE that supports payoff profile (xk, . . . , xk). As a PCE, σk cannot be profitably
blocked by the grand coalition N choosing â ∈ argmaxa∈AS v1(a), which would generate
the stage-game payoff profile (x̂, . . . , x̂). So for each k we have xk ≥ (1 − δ)x̂ + δx.
Since xk → x, it follows that x ≥ x̂. However, by definitions x ≤ x̂, so US = {v̂}.

Proof of Theorem 3. For the “only if” direction: Suppose there exists a strongly
symmetric PCE σ. By Lemma 4, σ’s continuation values satisfy U(h|σ) = v̂ for all
h ∈ H. Since v̂ is the maximal feasible payoff from symmetric action profiles, and σ

must prescribe symmetric action profiles after every history, it follows that the default
action profile σ(h) must satisfy u(σ(h)) = v̂ for all h ∈ H.
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Take an arbitrary ĥ ∈ H and let â := σ(ĥ) be the default action profile. As argued
above â is symmetric and u(â) = v̂, so it remains to show that â is a core alternative.
This must be true since otherwise, there exists coalition C and a′ ∈ EC(â) such that
vi(a

′) > vi(â) for all i ∈ C, which would imply

Ui(ĥ|σ) = (1− δ)vi(â) + δUi(ĥ, â, ∅) = (1− δ)vi(â) + δv̂i

< (1− δ)vi(a
′) + δv̂i = (1− δ)vi(a

′) + δUi(ĥ, a
′, {C}|σ)

for all i ∈ C, which contradicts σ being a PCE.
For the remainder of the theorem, suppose v̂ = v(â) for some symmetric core

alternative â. A plan that specifies â as default at all histories is a strongly symmetric
PCE that supports the discounted payoff v̂. Uniqueness follows from Lemma 4.

A.4 Proof of Theorem 5 on p. 18

Preliminary Results. To prove our claim, we first introduce the transferable-utility
analogue of the concept of a blocking plan, as defined in Appendix A.1.

A (transferable-utility) blocking plan by coalition C from a plan σ is a pair (α, β),
where α : H → A and β : H → T satisfy α(h) ∈ EC(a(h|σ)) and β−C(h) = χC(T (h|σ))
for every history h ∈ H. After each history, the blocking plan (α, β) generates a path(

α(h), β(h), α
(
h, α(h), {C}, β(h)

)
, β

(
h, α(h), {C}, β(h)

)
, . . .

)
that is distinct from the one generated by σ. We will use Ui(h|α, β) to denote player i’s
discounted payoff from that path. The blocking plan (α, β) is profitable if there exists
a history h such that Ui(h|α, β) > Ui(h|σ) for all i ∈ C.

Lemma 5. If a plan σ is a public PCE, then no coalition C ∈ S ∪N has a profitable
blocking plan.

Proof. Consider a public plan σ from which coalition C ∈ S ∪ N has a profitable
blocking plan (α, β). In particular, there exists a history h ∈ H such that Ui(h|α, β) >
Ui(h|σ) for every i ∈ C. We will show that this implies that coalition C has a profitable
block from the plan σ, so σ is not a PCE.

By Assumption 2, the plan σ has bounded continuation values. Moreover, as proven
in Lemma 7 in the Supplementary Appendix, it is without loss to assume that the
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blocking plan (α, β) also has bounded continuation values. Treating coalition C a
fictitious player whose payoff is the sum of those of its members, we can see that C

faces a decision tree with bounded values. Applying the standard one-shot deviation
principle to the fictitious player C yields the existence of ĥ ∈ H such that such that

(1− δ)
∑
i∈C

ui

(
α(ĥ), β(ĥ)

)
+ δ

∑
i∈C

Ui

(
ĥ, α(ĥ), {C}, β(ĥ)

∣∣∣σ) >
∑
i∈C

Ui(ĥ|σ).

To show that C can profitably block σ at ĥ amounts to showing that this total payoff
can be divided so that every individual member can be made better off.

Let T ∗ be the transfers matrix such that for all (j, k) /∈ C × C, T ∗
jk = βjk(ĥ); but

for (j, k) ∈ C × C, T ∗
jk satisfies for every i ∈ C,

(1− δ)ui

(
α(ĥ), T ∗

)
+ δUi

(
ĥ, α(ĥ), {C}, β(ĥ)

∣∣∣σ) > Ui(ĥ|σ). (5)

Consider the two histories h1 :=
(
ĥ, α(ĥ), {C}, β(ĥ)

)
and h2 :=

(
ĥ, a(ĥ|σ′), {C}, T ∗).

By the construction of T ∗ and the fact that C ∈ S ∪N , h1 and h2 share the same
public component h1

p = h2
p. Since the plan σ is public, it follows that for all i ∈ N ,

Ui

(
ĥ, α(ĥ), {C}, β(ĥ)

∣∣σ) = Ui

(
ĥ, α(ĥ), {C}, T ∗

∣∣σ). Inequality (5) can therefore be
re-written as (1− δ)ui

(
α(ĥ), T ∗)+ δUi

(
ĥ, α(ĥ), {C}, T ∗

∣∣σ) > Ui(ĥ|σ) for every i ∈ C,
which implies that σ is not a PCE.

The next result shows that for any payoff profile in UCR(S), we can construct
“(S ∪N)-specific punishments” for all coalitions in S ∪N .

Lemma 6. For any u∗ ∈ UCR(S), there exist (S ∪N)-specific punishments {uC : C ∈
S ∪N} ⊆ UCR(S) such that

∑
i∈C uC

i <
∑

i∈C u∗
i for all C ∈ S ∪ N , and

∑
i∈C uC

i <∑
i∈C uC′

i for all C,C ′ ∈ S ∪N,C ′ ̸= C.

Proof. For any coalition C ∈ S ∪N , consider the vector uC defined by

uC
i =

u∗
i − ϵ

|C| i ∈ C

u∗
i +

ϵ
|N\C| i /∈ C

Compared to the payoff vector u∗, in uC every player in C is taxed equally, with a total
summing up to ϵ; by contrast, players outside of C are paid equally, with a total also
summing up to ϵ. The ϵ may be set sufficiently small to ensure all uC ’s are in UCR(S).
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We show that these vectors satisfy the required inequalities. By construction,∑
i∈C uC

i =
∑

i∈C u∗
i − ϵ <

∑
i∈C u∗

i for all C ∈ S ∪ N , which verifies the first set
of inequalities in the lemma.

Now consider two coalitions C,C ′ ∈ S ∪ N with C ̸= C ′. Coalition C can be
partitioned as C = (C\C ′) ∪ (C ∩C ′). Compared to u∗, uC′ gives everyone outside C ′

an extra ϵ
|N\C′| , while lowering the payoff of everyone inside C ′ by ϵ

|C′| , so

∑
i∈C

uC′

i =
∑

i∈C\C′

uC′

i +
∑

i∈C∩C′

uC′

i =
[ ∑
i∈C\C′

u∗
i +

|C\C ′|
|N\C ′|

ϵ
]
+
[ ∑
i∈C∩C′

u∗
i −

|C ∩ C ′|
|C ′|

ϵ
]
.

Comining terms above yields
∑

i∈C uC′
i =

∑
i∈C u∗

i −
[ |C∩C′|

|C′| − |C\C′|
|N\C′|

]
ϵ. Note that since

C ̸= C ′, either C\C ′ ̸= ∅ or C ∩C ′ ̸= C ′ (or both) must be true; in other words, either
|C\C′|
|N\C′| > 0 or |C∩C′|

|C′| < 1. In either case,
∑

i∈C uC′
i >

∑
i∈C u∗

i − ϵ =
∑

i∈C uC
i , which

gives us the second set of inequalities in the lemma.

Proof of Theorem 5.
Part 1: For all δ ≥ 0, public PCEs give each C ∈ S ∪N a total payoff of at least uC.
We prove a stronger statement: every public PCE σ guarantees that for every coalition
C ∈ S ∪ N and every history h ∈ H,

∑
i∈C Ui(h|σ) ≥ uC . Towards a contradiction,

suppose a public plan σ such that there exists a coalition C ∈ S ∪N and history ĥ

such that
∑

i∈C Ui(ĥ|σ) < uC . We prove that σ must not be a PCE.
To this end, we construct a profitable blocking plan from σ for coalition C. At every

history h ∈ H, let a(h|σ) denote the default and α(h) ∈ argmaxa∈EC(a(h|σ))
∑

i∈C vi(a)

be an alternative in coalition C’s “best response.” By the definition of uC , it follows
that

∑
i∈C vi(α(h)) ≥ uC >

∑
i∈C Ui(ĥ|σ), so we can find transfers among players in C

such that when combined with α(h), these transfers give each i ∈ C higher payoff than
Ui(ĥ|σ). Formally, at every history h ∈ H, there exist transfers T̃C(h) := [T̃ij(h)]i∈C,j∈N

such that T̃ij(h) = 0 for all j ∈ N\C, and vi(α(h)) +
∑

j∈C T̃ji(h) −
∑

j∈C T̃ij(h) >

Ui(ĥ|σ) for all i ∈ C. As a result, for each player i ∈ C, the experienced payoff from
the stage-game outcome satisfies

ui

(
α(h), T̃C(h), χ

C
(
T (h|σ)

))
≥ vi(α(h)) +

∑
j∈C

T̃ji(h)−
∑
j∈C

T̃ij(h) > Ui(ĥ|σ),

where the weak inequality follows because χC
ji(T (h|σ) ) ≥ 0 for all j ∈ N , and T̃ij(h) =

0 for all j ∈ N\C. Observe that the inequality above can hold at every history,
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including ĥ and those that follow. These steps prove that the blocking plan (α, β) by
coalition C, where β(h) :=

[
T̃C(h), χ

C(T (h|σ))
]

for every history h ∈ H, is profitable:
Ui(ĥ|α, β) > Ui(ĥ|σ) for every i ∈ C. Lemma 5 then implies that σ is not a PCE.

Part 2: For every u ∈ UCR(S), there δ < 1 such that for all δ ∈ (δ, 1), there exists a
public PCE supporting u.
For every C ∈ S ∪N , let aC ∈ argmina∈A maxa′∈EC(a)

∑
i∈C vi(a

′) be an alternative
that can be used to minmax C. Note that by construction,

∑
i∈C vi(aC) ≤ uC .

Fix any payoff vector u∗ ∈ UCR(S), and let {uC : C ∈ S ∪ N} be the (S ∪N)-
specific punishments from Lemma 6. Given these punishments, let κ ∈ (0, 1) be such
that for every κ̃ ∈ [κ, 1], the following is true for all C ∈ S ∪N and C ′ ∈ S ∪N\{C}:

(1− κ̃)
∑
i∈C

vi(aC) + κ̃
∑
i∈C

uC
i > uC (6)

(1− κ̃)
∑
i∈C′

vi(aC) + κ̃
∑
i∈C′

uC
i > (1− κ̃)

∑
i∈C′

vi(aC′) + κ̃
∑
i∈C′

uC′

i . (7)

By an argument identical to that in Theorem 1, there exists κ ∈ (0, 1) such that the
inequalities above hold for all κ̃ ∈ [κ, 1], C ∈ S ∪ N and C ′ ∈ S ∪ N\{C}. Let
L(δ) :=

⌈
log κ
log δ

⌉
. As before, we use the property that limδ→1 δ

L(δ) = κ.
For each alternative a ∈ A let U(a) := {u ∈ Rn :

∑
i ui =

∑
i vi(a)} denote the

set of payoff profiles that can be generated by playing alternative a and redistributing
through transfers. Let a ∈ argmaxa∈A

∑
i∈N vi(a) and a ∈ argmina∈A

∑
i∈N vi(a) be

alternatives that maximize and minimize total payoffs, respectively. Since UCR(S) ⊆
UIR, by Lemma 8 in the Supp. Appendix, there exist payoff vectors {ũ1, . . . , ũM} ⊆
U(a)∪U(a) such that UCR(S) ⊆ co(ũ1, . . . , ũM), where each ũm = u(ãm, T̃m) for some
ãm ∈ {a, a} and T̃m. Let T̃ := {T̃m}Mm=1 be the set comprising these transfer matrices.

By Lemma 1, for any ϵ > 0, there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), there
exist sequences

{
(ad,τ , T d,τ )∞τ=0 : d ∈ S ∪N ∪ {∗}

}
⊆ {a, a} × T̃ such that for each d

and t, (1 − δ)
∑∞

τ=0 δ
τu(ad,τ , T d,τ ) = ud and

∣∣∣∣ud − (1− δ)
∑∞

τ=t δ
τu(ad,τ , T d,τ )

∣∣∣∣ < ϵ.
We fix an ϵ such that

ϵ < (1− κ)min
{

min
d∈S∪N,d′∈S∪N∪{∗},d′ ̸=d

(∑
i∈d

ud′

i −
∑
i∈d

ud
i

)
, min
d∈S∪N

∑
i∈d

ud
d − vd

}
,

and given that ϵ, consider δ exceeding the appropriate δ.
We now describe the public plan that we use to support u∗. Let 0 denote the
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transfer matrix where all players make no transfers. Consider the plan represented by
the automaton (W,w(0, 0), f, γ), where

• W :=
{
w(d, τ )|d ∈ S ∪N ∪ {∗}, τ ≥ 0

}
∪ {w(S, τ) |S ∈ S ∪N, 0 ≤ τ < L(δ)} is

the set of possible states and w(∗, 0) is the initial state;

• f : W → O is the output function, where f(w(d, τ )) = (ad,τ , ∅, T d,τ ) and
f(w(S, τ)) = (aS, ∅,0);

• γ : W × O → W is the transition function. For any collection of blocking
coalitions B ∈ B, define Ĉ(B) = (B ∩ S)∪ (∪C∈B\SC). Note that (B ∩ S) is the
set of secret coalitions in B, while ∪C∈B\SC are the members of the non-secret
blocking coalitions, so Ĉ(B) is the collection of “players” in B if coalitions in S
are treated as fictitious players. For each S ∈ S let uS(a, T ) =

∑
i∈S ui(a, T )

denote the total utility accruing to S.
For states of the form {w(S, τ)|0 ≤ τ < L(δ)− 1, S ∈ N ∪ S}, the transition is

γ(w(S, τ), (a,B, T )) =



w(S∗, 0) where S∗ ∈ argminĈ(B)\{S} uS′(a, T ),

if B ̸= ∅ but either {S /∈ Ĉ(B)}

or {uS(a, T ) > uS} is true.

w(S, 0) if B ̸= ∅ and both {S ∈ Ĉ(B)}

and {uS(a, T ) ≤ uS} are true.

w(S, τ + 1) if B = ∅.

For states of the form {w(S, L(δ)− 1)|S ∈ N ∪ S}, the transition is

γ(w(S, L(δ)− 1), (a,B, T )) =



w(S∗, 0) where S∗ ∈ argminĈ(B)\{S} uS′(a, T ),

if B ̸= ∅ but either {S /∈ Ĉ(B)}

or {uS(a, T ) > uS} is true.

w(S, 0) if B ̸= ∅ and both {S ∈ Ĉ(B)}

and {uS(a, T ) ≤ uS} are true.

w(S, 0) if B = ∅.
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For states of the form w(d, τ ), the transition is

γ
(
w(d, τ ), (a,B, T )

)
=


w(S∗, 0) if B ̸= ∅,

where S∗ ∈ argminS′∈Ĉ(B) uS′(a, T ).

w(d, τ + 1) if B = ∅.

The plan represented by this automaton yields payoff profile u∗. The plan is also
public since the transition relies only on B and {uS(a, T ) : S ∈ Ĉ(B)}, both of which
are public information. By construction,

∣∣∣∣ud − V (w(d, τ ))
∣∣∣∣ < ϵ and V (w(S, τ)) =

(1− δL(δ)−τ )v(aS)+ δL(δ)−τV (w(S, 0)) for all τ in {0, . . . , L(δ− 1)} and S ∈ S ∪N . As
the arguments from here on are standard, we verify in the Supplementary Appendix
that no coalition can profitably block in any state of this automaton.
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B Supplementary Appendix
The Supplementary Appendix completes the proof of Theorem 5 and contains the
proofs of all propositions.

B.1 Preliminary Results

Below, we prove a few preliminary results used in the proof of Theorem 5. The first
result shows that when checking profitable blocking plans, we can WLOG focus on
those with bounded total continuation values.

Lemma 7. Let σ be a PCE. Suppose coalition C has blocking plan (α, β) such that∑
i∈C Ui(h|α, β) >

∑
i∈C Ui(h|σ) for some h ∈ H, then C has blocking plan (α′, β′) such

that
∑

i∈C Ui(h|α′, β′) >
∑

i∈C Ui(h|σ), and {
∑

i∈C Ui(h|α′, β′) : h ∈ H} is bounded.

Proof. We break this argument into two parts.

Part 1: We show that the set {
∑

i∈C Ui(h|α, β) : h ∈ H} is bounded from above. To
this end, it suffices to show that the set of stage-game payoffs from the blocking plan,
{
∑

i∈C ui(α(h), β(h)) : h ∈ H} is bounded from above.
Consider an arbitrary coalition C ∈ C and an arbitrary history h ∈ H. Let ã =

a(h|σ) denote the default alternative specified by σ and T̃ = T (h|σ) denote the default
transfers. By the definition of a blocking plan, α(h) ∈ EC(ã) and β(h) = (T ′

C , χ
C(T̃ ))

for some T ′
C ∈ TC . Since the transfers T ′

C may involve nonzero transfers to players
outside of C, we have∑

i∈C

ui(α(h), β(h)) =
∑
i∈C

vi(ã) +
∑

i∈C,j /∈C

χC
ji(T̃ )−

∑
i∈C,j /∈C

T ′
ij

≤
∑
i∈C

vi(ã) +
∑

i∈C,j /∈C

χC
ji(T̃ ) (8)

Now suppose the coalition C blocks at history h and chooses alternative α(h) ∈
EC(ã); however, instead of β(h) = (T ′

C , χ
C(T̃ )), C chooses transfers (T ′′

C , χ
C(T̃ )), where

the transfers T ′′
C are such that members of C make zero payment to players outside of

C while splitting the total payoff within C evenly. If C carries out this block, each
member i ∈ C obtains a discounted utility of at least

(1− δ)
1

|C|

[∑
i∈C

vi(α(h)) +
∑

i∈C,j /∈C

χC
ji(T̃ )

]
+ δ inf

h∈H,i∈N
Ui(h|σ),

46



whereas adhering to σ at h yields each member at most suph∈H,i∈N Ui(h|σ). Since σ is
a PCE,

(
α(h), T ′′

C , χ
C(T̃ )

)
cannot be a profitable block for C, so it must be true that

(1− δ)
1

|C|

[∑
i∈C

vi(ã) +
∑

i∈C,j /∈C

χC
ji(T̃ )

]
+ δ inf

h∈H,i∈N
Ui(h|σ) ≤ sup

h∈H,i∈N
Ui(h|σ).

Combining the inequality above with (8) yields

(1− δ)
1

|C|

[∑
i∈C

ui(α(h), β(h))
]
+ δ inf

h∈H,i∈N
Ui(h|σ) ≤ sup

h∈H,i∈N
Ui(h|σ).

Rearranging terms, we have

∑
i∈C

ui(α(h), β(h)) ≤
|C|
1− δ

[
sup

h∈H,i∈N
Ui(h|σ)− δ inf

h∈H,i∈N
Ui(h|σ)

]

≤ |C|
1− δ

∣∣∣∣∣ sup
h∈H,i∈N

Ui(h|σ)

∣∣∣∣∣+ |C|δ
1− δ

∣∣∣∣ inf
h∈H,i∈N

Ui(h|σ)
∣∣∣∣ .

Since {U(h|σ) : h ∈ H} is bounded by Assumption 2, there exists L > 0 such that∣∣∣∣∣ sup
h∈H,i∈N

Ui(h|σ)

∣∣∣∣∣ ≤ L and
∣∣∣∣ inf
h∈H,i∈N

Ui(h|σ)
∣∣∣∣ ≤ L.

Therefore, ∑
i∈C

ui(α(h), β(h)) ≤
1 + δ

1− δ
|C|L.

Note that the inequality above holds for all h ∈ H while the right hand side does not
depend on h, so our claim follows.

Part 2: It is without loss to assume that {
∑

i∈C Ui(h|α, β) : h ∈ H} is bounded from be-
low. If not, we can construct another blocking plan (α′, β′) such that

∑
i∈C Ui(h|α′, β′) >∑

i∈C Ui(h|σ) while ensuring {
∑

i∈C Ui(h|α′, β′) : h ∈ H} is bounded from below: if∑
i∈C Ui(ĥ|α, β) falls below mina∈A

∑
i∈C vi(a) for some history ĥ ∈ H, we will ask C

to refuse all outgoing transfers at all histories following ĥ.
Formally, for a history ĥ ∈ H, let F (ĥ) := {hĥ : h ∈ H} denote the set of histories

that can follow from ĥ. Let HC := {h ∈ H :
∑

i∈C Ui(h|α, β) < mina∈A
∑

i∈C vi(a)}.
Let 0C denote the vector of zero-valued transfers made from players in C. Set α′ = α,
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and define

β′(h) =


(
0C , χ

C(T (h|σ))
)

∀h ∈ F (ĥ) for some ĥ ∈ HC ,

β(h) otherwise.

By construction, the blocking plan (α′, β′) has continuation values bounded below
by mina∈A

∑
i∈C vi(a). In addition, compared to (α, β), the blocking plan (α′, β′)

gives coalition C weakly higher total continuation value following any history, so∑
i∈C Ui(h|α′, β′) >

∑
i∈C Ui(h|σ).

Next we argue that there exists a finite set of payoff vectors whose convex hull
contains the set UIR.

Lemma 8. For each alternative a ∈ A let U(a) := {u ∈ Rn :
∑

i ui =
∑

i vi(a)} denote
the set of payoff profiles that can be generated by playing alternative a and redistributing
through transfers. Let a ∈ argmaxa∈A

∑
i∈N vi(a) and a ∈ argmina∈A

∑
i∈N vi(a) be two

alternatives that maximize and minimize players’ total generated payoffs, respectively.
There exist payoff vectors {ũ1, . . . , ũM} ⊆ U(a)∪ U(a), such that UIR ⊆ co(ũ1, . . . , ũM).

Proof. By definition,

UIR ⊆ U IR :=

{
u ∈ Rn :

∑
i∈N

vi(a) ≤
∑
i∈N

ui ≤
∑
i∈N

vi(a) and ui ≥ vi∀i ∈ N

}
.

Since U IR is a bounded polyhedron, it is also a polytope. Let x1, . . . , xK be its ver-
tices. Any point inside UIR can then be expressed as convex combinations of these
vertices. Since xk ∈ co(U(a) ∪ U(a)) for all 1 ≤ k ≤ K, for each k, there ex-
ist {ũk,1, . . . , ũk,mk} ⊆ U(a) ∪ U(a) such that xk ⊆ co(ũk,1, . . . , ũk,mk). As a result
UIR ⊆ co(∪1≤k≤K

{
ũk,1, . . . , ũk,mk

}
).

B.2 Completing the Proof of Theorem 5

Recall that T̃ = {T̃m}Mm=1 and
{
(ad,τ , T d,τ )∞τ=0 : d ∈ S ∪N ∪ {∗}

}
⊆ {a, a} × T̃ , so all

default transfers from the plan are selected from a finite set. By Assumption 1, when
a coalition C ∈ C blocks a default transfers matrix T ∈ T̃ , there exists b̃ > 0 such that∑

i/∈C,j∈C

χC
ij(T ) ≤ b̃ for all T ∈ T̃ and C ∈ C. (9)
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In addition, since A is compact and v(.) is continuous, there exists b̂ such that

max
C∈C

max
a∈A

∑
i∈C

vi(a) ≤ b̂. (10)

We verify the incentives in the automaton states below.

States of the form w(d, τ ): Suppose coalition C blocks and the outcome (â, {C}, T̂ )
is realized. Note that if C ∈ S∪N , then Ĉ({C}) = {C} is a singleton set containing C

as a unitary player. However, if C /∈ S∪N , then Ĉ({C}) = C, which is a non-singleton
set consisting of players in C. The plan punishes S∗ ∈ argminS′∈Ĉ({C}) uS′(a, T ), so
S∗ is either C as a unitary player or some player i ∈ C. In either case, the (total)
stage-game payoff for S∗ satisfies

uS∗(â, T̂ ) ≤ 1

|Ĉ({C})|

∑
S′∈Ĉ({C})

uS′(â, T̂ ) ≤ max
a∈A

∑
j∈C

vj(a) +
∑
j∈C

∑
k/∈C

χC
kj(T

d,τ ) ≤ b̂+ b̃,

where the first inequality follows since the minimum among a set of numbers is less
than their average; the second inequality follows since C’s total payoff comes from the
generated payoffs plus the net transfers paid by players outside of C; lastly, the third
inequality follows from (9) and (10) and the fact that all T d,τ are drawn from {T̃m}Mm=1.

Thus, we can find a uniform bound b1 := b̂+ b̃ such that the total stage-game payoff
of S ′, satisfies uS′(â, T̂ ) ≤ b for all C, δ and (d, τ ). Following the same steps as those in
the analogous part of Theorem 1, we can show that (when viewed as a unitary player
if S∗ is not a single player) S∗ obtains lower total payoff after coalition C blocks. If
S∗ is a player in C, then this is not profitable block for C; if S∗ = C, then there exists
player i ∈ S∗ = C who is not better off, so again this is not a profitable block for C.

States of the form w(S, τ) where S ∈ N ∪ S: Suppose coalition C blocks and the
outcome is (â, {C}, T̂ ). Just like above, depending on whether C ∈ S ∪N , Ĉ({C}) is
either {C} containing C as a unitary player or the set C containing all its members.
There are 2 cases to consider.
Case I: S ∈ Ĉ({C}), and uS(â, T̂ ) ≤ uS. In this case, the plan punishes the current
scapegoat S, where S is either C or a member of C. Using (6) for sufficiently high δ

and following steps identical to the analogous argument in Theorem 1, we can show
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that

(1− δL(δ)−τ )vS(aS) + δL(δ)−τuS
S ≥ (1− δ)uS + δ(1− δL(δ))vS(aS) + δL(δ)+1uS

S,

where vS(.) =
∑

i∈S vi(.) and uS
S =

∑
i∈S u

S
i denote the sum of the members’ payoffs

in case S is a coalition. If S is a member of C, then the inequality above shows that
the blocking is not profitable for C; if S is C itself, it implies that blocking does not
improve C’s total value, so there exist i ∈ C who is not better off, so again the blocking
is not profitable for C.

Case II: either S /∈ Ĉ({C}) or uS(â, T̂ ) > uS. In this case the plan punishes S∗ ∈
argminS′∈Ĉ({C})\{S} uS′(â, T̂ ) as scapegoat.

First observe that if C blocks in state w(S, τ) and the stage-game payoff satisfies
uS(â, T̂ ) > uS, then no matter if S ∈ N or S ∈ S, it must be that C ̸= S and therefore
Ĉ({C}) ̸= {S}; otherwise the definition of uS would ensure uS(â, T̂ ) ≤ uS. As a result,
under either of the conditions defining the current case (i.e. S /∈ Ĉ({C}) or uS(â, T̂ ) >

uS), Ĉ({C}) ̸= {S} must be true, so the scapegoat S∗ ∈ argminS′∈Ĉ({C})\{S} uS′(â, T̂ )

is well defined.
Next we show that the (total) stage-game payoff of S∗ is bounded. If S /∈ Ĉ({C}),

then
S∗ ∈ argmin

S′∈Ĉ({C})\{S}
uS′(â, T̂ ) = argmin

S′∈Ĉ({C})
uS′(â, T̂ ),

and

uS∗(â, T̂ ) ≤ 1

|Ĉ(C)|

∑
S′∈Ĉ(C)

uS′(â, T̂ ) ≤ 1

|Ĉ(C)|
max
a∈A

∑
j∈C

vj(a), (11)

where the last inequality above follows from Assumption 1 and the fact that the default
transfers are 0 in states w(S, τ). Alternatively, if S ∈ Ĉ({C}) and uS(â, T̂ ) > uS, then

uS∗(â, T̂ ) ≤ 1

|Ĉ({C})| − 1

∑
S′∈Ĉ({C})\{S}

uS′(â, T̂ )

=
1

|Ĉ({C})| − 1

[ ∑
S′∈Ĉ({C})

uS′(â, T̂ )− uS(â, T̂ )
]

≤ 1

|Ĉ({C})| − 1

[ ∑
S′∈Ĉ({C})

uS′(â, T̂ )− uS

]
,
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where the last inequality follows because we are considering the case uS(â, T̂ ) > uS.
Since the plan specifies zero default transfers, Assumption 1 ensures

uS∗(â, T̂ ) ≤ 1

|Ĉ({C})| − 1

[
max
a∈A

∑
i∈C

vi(a)− uS

]
. (12)

Comparing the RHS of (11) and (12) to the bounds obtained in (9) and (10), it follows
that we can find b2 such that uS∗(â, T̂ ) < b2.

Finally, to show that the blocking by C is not profitable, note that the (total) payoff
of S∗ is not improved by blocking if

(1− δL(δ)−τ )vS∗(aS) + δL(δ)−τuS
S∗ ≥ (1− δ)b2 + δ(1− δL(δ))vS∗(aS∗) + δL(δ)+1uS∗

S∗ .

This inequality follows for sufficiently high δ from the same steps as that of the anal-
ogous part of Theorem 1. Based on the same arguments as in previous cases, the
blocking is not profitable for C.

B.3 Proof of Proposition 1 on p. 21

Note that for each player i ∈ F ∪W , the individual minmax is vi = 0. The result then
follows from applying Theorem 4.

B.4 Proof of Proposition 2 on p. 22

Preliminary Results.

Lemma 9. Let x̂ = maxϕ∈A
∑

i∈N vi(ϕ). If u ∈ Rn satisfies
∑

i∈N ui ≤ x̂ and∑
i∈C ui ≥ uC for all C ∈ E , then

∑
i∈N ui = x̂.

Proof. Take any ũ ∈ Rn satisfying
∑

i∈N ũi ≤ x̂ and
∑

i∈C ũi ≥ uC for all C ∈ E .
Towards a contradiction, suppose that ũ is not utilitarian efficient; that is, suppose∑

i∈N ũi < x̂. Then there exists an assignment ϕ′ ∈ A such that
∑

i∈N vi(ϕ
′) >

∑
i∈N ũi.

Let π′ denote the partition of players into essential coalitions induced by the matching
ϕ′, so π′ ⊆ E . It follows that there exists C ′ ∈ π′ ⊆ E such that uC′ =

∑
i∈C′ vi(ϕ

′) >∑
i∈C′ ũi, which is a contradiction to the assumption that

∑
i∈C ũ ≥ uC for all C ∈ E .

So ũ must be utilitarian efficient.
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Lemma 10. Let x̂ = maxϕ∈A
∑

i∈N vi(ϕ). The set K is characterized by

K = {u ∈ Rn :
∑
i∈N

ui = x̂,
∑
i∈C

ui ≥ uC for all C ∈ E}. (13)

Proof. Take any ũ ∈ K. Suppose, for the sake of contradiction, that there exists some
C ∈ E such that

∑
i∈C ũi < uC , then ũ would be blocked by C, which contradicts the

assumption that ũ ∈ K. So
∑

i∈C ũi ≥ uC must hold for all C ∈ E . Lemma 9 then
implies that ũ is utilitarian efficient, so ũ satisfies the conditions in (13).

For the converse, take any ũ that satisfies the conditions in (13). We will show
that ũ ∈ K, i.e., there exists a core allocation (ϕ, T ) such that ũ = u(ϕ, T ). Since K is
nonempty, there exists a core alternative (ϕ̃, T̃ ), which by the arguments above must
satisfy

∑
i∈N vi(ϕ̃) = x̂. Since

∑
i∈N ũi = x̂, there exists T̃ ′ ∈ T such that ũ = u(ϕ̃, T̃ ′).

Note however that T̃ ′ may involve nonzero transfers between players who are not in an
employment relationship, so (ϕ̃, T̃ ′) may not constitute a matching. Nevertheless, let
π̃ denote the partition of players induced by ϕ̃. For every C ∈ π̃, it must hold that∑

i∈C,j /∈C

T̃ ′
ij −

∑
i∈C,j /∈C

T̃ ′
ji = 0,

for otherwise we would have
∑

i∈C′ ũi <
∑

i∈C′ vi(ϕ̃) for some C ′ ∈ π̃, contradicting the
fact that ũ satisfies (13). Therefore, we can construct T̃ ′′ ∈ T such that

ũ = u(ϕ̃, T̃ ′′), and T̃ ′′
ij ̸= 0 only if i = ϕ̃(j) or i ∈ ϕ̃(j),

so (ϕ̃, T̃ ′′) is a matching that induces payoff profile ũ. Since
∑

i∈C ũi ≥ uC for all C ∈ E ,
(ϕ̃, T̃ ′′) cannot be blocked by any coalition, so (ϕ̃, T̃ ′′) is a core allocation, and therefore
ũ ∈ K.

Lemma 11. Let

UM := co
({

u ∈ Rn : ∃(ϕ, T ) ∈ M such that u = u(ϕ, T )
})

denote the convex hull of all feasible matching payoffs. Then{
u ∈ UM :

∑
i∈C

ui ≥ uC for all C ∈ E
}
= K.
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Proof. The fact that K ⊆
{
u ∈ UM :

∑
i∈C ui ≥ uC for all C ∈ E

}
follows from the

definition of K.
To show

{
u ∈ UM :

∑
i∈C ui ≥ uC for all C ∈ E

}
⊆ K, take any ũ ∈ UM, since ũ

is a convex combination of feasible payoff vectors, it must be that∑
i∈N

ũi ≤ x̂ := max
ϕ∈A

∑
i∈N

vi(ϕ).

Lemma 9 then implies that
∑

i∈N ũi = x̂, so ũ ∈ K by Lemma 10.

Proof of Proposition 2. We first prove that every payoff vector in K can be
supported by a public PCE. For any ũ ∈ K there exists core allocation (ϕ, T ) such that
ũ = u(ϕ, T ). Consider the plan σ̃ defined by σ̃(h) = (ϕ, T ) for all h ∈ H. The plan
σ̃ is obviously public and produces discounted payoff profile u. Given that (ϕ, T ) is a
core allocation, σ̃ is also a PCE.

We now prove that for every δ ≥ 0, every public PCE implements a discounted
payoff profile in K. By Theorem 5, for every δ ≥ 0, every discounted payoff profile ũ

produced by a public PCE must satisfy
∑

i∈C ũi ≥ uC for all C ∈ E , so ũ ∈
{
u ∈ UM :∑

i∈C ui ≥ uC for all C ∈ E
}

. By Lemma 11, ũ then must be an element of K.

B.5 Proof of Proposition 3 on p. 23

Preliminary Results.

Lemma 12. All static stable matchings fill slots {(f, l) : ρ(f, l) ≥ max{0, η(L)}} while
leaving other slots vacant; more over, all workers receive the same payoff r where
max{0, η(L+ 1)} ≤ r ≤ max{0, η(L)}.

Proof. We break down the proof into two parts.
Part 1: All static stable matchings fill slots {(f, l) : ρ(f, l) ≥ max{0, η(L)}} while
leaving other slots vacant.

Let m be any static stable matching. We first show that m must be utilitarian
efficient. Suppose, for the sake of contradiction, that m is not utilitarian efficient.
Then there exists a reassignment of players that increases players’ total payoff, which
implies the existence of f ∈ F and W ⊆ W such that vf (W )+

∑
w∈W vw(f) > vf (m)+∑

w∈W vw(m). But this implies that m is profitably blocked by (f,W ), contradicting
the stability of m.
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Next, we show that since m is utilitarian efficient, it fills all slots in {(f, l) : ρ(f, l) ≥
max{0, η(L)}}. Suppose, for the sake of contradiction, that there exists a slot (f̃ , l̃) ∈
{(f, l) : ρ(f, l) ≥ max{0, η(L)}} that is not filled. Let l̃∗ = min{l : (f̃ , l) is unfilled}
denote the first unfilled position at firm f̃ . Since firms have diminishing marginal
products, we have ρ(f̃ , l̃∗) ≥ ρ(f̃ , l̃), so (f̃ , l̃∗) is an open slot in {(f, l) : ρ(f, l) ≥
max{0, η(L)}} that is immediately accessible by workers. Since there are L workers in
total, if not all slots in {(f, l) : ρ(f, l) ≥ max{0, η(L)}} are filled, there exists w′ ∈ W

who is either unemployed or filling a slot outside of {(f, l) : ρ(f, l) ≥ max{0, η(L)}}.
In the first scenario, matching w′ to the unfilled slot (f̃ , l̃∗) would strictly increase the
total surplus. In the second scenario, let (f̂ , l̂) be the slot filled by w′, and let l̂∗ =

max{l : (f̂ , l) is filled} denote the last occupied slot at firm f̂ , and ŵ∗ denote the worker
filling (f̂ , l̂∗). It follows from decreasing marginal product that (f̂ , l̂∗) is also outside
of {(f, l) : ρ(f, l) ≥ max{0, η(L)}}, so matching ŵ∗ to the unfilled slot ρ(f̃ , l̃∗) instead
would strictly increase the total surplus, again contradicting the utilitarian efficiency
of m. Thus, all stable matchings must fill the slots in {(f, l) : ρ(f, l) ≥ max{0, η(L)}}.

To show that all slots outside of {(f, l) : ρ(f, l) ≥ max{0, η(L)}} are vacant, there
are two cases to consider. If η(L) > 0, we know from the arguments above that the L

slots in {(f, l) : ρ(f, l) ≥ η(L)} are filled, so all other slots must be vacant. If η(L) < 0,
then the set {(f, l) : ρ(f, l) ≥ max{0, η(L)} becomes {(f, l) : ρ(f, l) ≥ 0}, and let
us suppose, for the sake of a contradiction, that some slot (f̃ , l̃) with ρ(f̃ , l̃) < 0 is
filled. Let l̃∗ = max{l : (f̃ , l) is filled} denote the last filled slot at firm f̃ , and let
w̃ denote the worker matched to this position. Due to decreasing marginal returns,
we have ρ(f̃ , l̃∗) < 0 as well, so simply unmatching w̃ from (f̃ , l̃∗) will increase the
total surplus. This contradicts the efficiency of m, which implies that m would not not
stable. It follows that all stable matchings must leave slots outside {(f, l) : ρ(f, l) ≥
max{0, η(L)}} vacant.

Part 2: All workers are paid the same wage r, where max{0, η(L + 1)} ≤ r ≤
max{0, η(L)}.

First we establish that all workers have the same wage. Take any static stable
matching m. From Part 1, all positions in {(f, l) : ρ(f, l) ≥ max{0, η(L)}} are filled.
We prove that all workers have the same wage under two separate cases.

First, suppose η(L) < 0. It follows that |{(f, l) : ρ(f, l) ≥ max{0, η(L)}}| < L, so
in the stable matching m there exists a worker w̃ who is unmatched. This means w̃

receives 0 payoff in the stable matching m. It then follows that any other employed
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worker must also receive 0 payoff, since otherwise there is a profitable block where their
employer replaces them with w̃.

Second, suppose η(L) > 0. Since by assumption ρ(f, L) < max{0, η(L)}, there
exists f1 and f2 such that both f1 and f2 employ workers in m. Since workers are
identical, each worker working for f1 must receive the same payoff as any worker at
f2 in m. This implies that workers at f1 and f2 all have the same payoff. The same
argument applies to workers employed by any other firm, so all workers receive the
same payoff.

Let r denote the payoff that workers receive, we next show that max{0, η(L+1)} ≤
r ≤ max{0, η(L)}. It is obvious that r ≥ 0 by workers’ individual rationality. To
complete the arguments, it suffices to demonstrate the validity of three statements: A.
r ≥ η(L+ 1) if η(L+ 1) > 0; B. r ≤ η(L) if η(L) > 0; and C. r = 0 if η(L) ≤ 0.

Statement A: if η(L+1) > 0, then decreasing marginal return implies η(L) > 0, so
from Part 1 we know all L workers are assigned to {(f, l) : ρ(f, l) ≥ max{0, η(L)}} =

{(f, l) : ρ(f, l) ≥ η(L)}. Let (f̃ , l̃) denote the slot with value ρ(f̃ , l̃) = η(L + 1). By
decreasing marginal return, any slot {(f̃ , l) : l < l̃} at f̃ is in {(f, l) : ρ(f, l) ≥ η(L)}
and already filled. It follows that r ≥ η(L+ 1), since otherwise f̃ can profitably block
m by poaching a worker from other firms, which generates additional surplus η(L+1),
while offering wage r′ satisfying η(L+ 1) > r′ > r.

Statement B: if η(L) > 0, again from Part 1 we know that all L workers are assigned
to {(f, l) : ρ(f, l) ≥ η(L)}. Let (f̃ , l̃) be the slot such that ρ(f̃ , l̃) = η(L). By decreasing
marginal return we know that (f̃ , l̃) must be the last filled slot at firm f̃ . It follows
that workers’ payoff is no more than η(L) since otherwise f̃ can profitably block by
firing the worker matched to the slot (f̃ , l̃).

Statement C: if η(L) < 0, then there are at most (L − 1) slots with a positive
surplus, which by Part 1 implies that in any stable matching there exists a worker w̃

who is unmatched. In this case, workers’ payoff must be 0 since otherwise the matching
is profitably blocked by a firm replacing one of its employees with worker w̃.

Combining statements A, B, and C lets us conclude that max{0, η(L + 1)} ≤ r ≤
max{0, η(L)}.

Proof of Proposition 3. The first half of Proposition 3 follows from Proposi-
tion 1, while the second half of Proposition 3 follows from combining Proposition 2
and Lemma 12.
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B.6 Proof of Proposition 4 on p. 25

Since by assumption both markets M1 and M2 satisfy ηi(L + 1) > 0, Lemma 12
implies that in each market Mi, where i = 1 or 2, all static stable matchings fill the
slots in {(f, l) : ρi(f, l) ≥ max{0, ηi(L)}} = {(f, l) : ρi(f, l) ≥ ηi(L)}. Moreover,
the workers’ payoff r in market Mi satisfies ηi(L + 1) ≤ r ≤ ηi(L). Recall that the
total surplus is Πi :=

∑L
ℓ=1 ηi(ℓ), while the set of potential workers’ total surplus is

ΠW
i = [Lηi(L+ 1), Lηi(L)], and the set of potential firms’ total surplus is

ΠF
i = Πi − ΠW

i =
[ L∑

ℓ=1

ηi(ℓ)− Lηi(L),
L∑

ℓ=1

ηi(ℓ)− Lηi(L+ 1)
]
.

To simplify notation let us denote bWi := Lηi(L + 1) and b
W
i := Lηi(L), so ΠW

i =

[bWi , b
W
i ]. Similarly, let bFi :=

∑L
ℓ=1 ηi(ℓ) − Lηi(L) and b

F
i =

∑L
ℓ=1 ηi(ℓ) − Lηi(L + 1),

so ΠF
i = [bFi , b

F
i ].

Let s := η1(1) = η2(1). For each 2 ≤ ℓ ≤ L, define ∆i
ℓ := ηi(ℓ − 1) − ηi(ℓ), so

ηi(ℓ) = s−
∑ℓ

k=2 ∆
i
k for all ℓ ≥ 2. It follows that

L∑
ℓ=1

ηi(ℓ) =sL−
L∑

ℓ=2

(L+ 1− ℓ)∆i
ℓ,

Lηi(L) = sL− L
L∑

ℓ=2

∆i
ℓ, and Lηi(L+ 1) = sL− L

L+1∑
ℓ=2

∆i
ℓ.

This allows us to express the bounds for firms’ and workers’ aggregate surplus in terms
of s and ∆i

ℓ’s, yielding

bWi = sL− L

L+1∑
ℓ=2

∆i
ℓ, and b

W
i = sL− L

L∑
ℓ=2

∆i
ℓ, (14)

bFi =
L∑

ℓ=2

(ℓ− 1)∆i
ℓ, and b

F
i =

L+1∑
ℓ=2

(ℓ− 1)∆i
ℓ. (15)

Market M2 exhibits more more steeply decreasing returns than M1 is equivalent to
∆2

ℓ ≥ ∆1
ℓ for all 2 ≤ ℓ ≤ L, which implies η2(ℓ) ≤ η1(ℓ) for all 1 ≤ ℓ ≤ L, so Π2 ≤ Π1.

In (14), all the ∆i
ℓ’s enter the bounds for worker surplus with negative coefficients, so

bW2 ≤ bW1 and b
W
2 ≤ b

W
1 , where the inequalities are strict if M2 has strictly more steeply

decreasing returns than M1. By contrast, in (15) the ∆i
ℓ terms enter the bounds with
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positive coefficients, so bF2 ≥ bF1 and b
F
2 ≥ b

F
1 , where, again, the inequalities are strict

if M2 has strictly more steeply decreasing returns than M1. Together, the directions
of change for these bounds imply ΠW

2 ≼S ΠW
1 and ΠF

2 ≽S ΠF
1 , with strict set orders if

M2 has strictly more steeply decreasing returns than M1.

B.7 Proof of Proposition 5 on p. 28

Preliminary Results. We will use an alternative a ∈ A to also represent its
generated payoff profile v(a). We establish two preliminary results. Lemma 13 establish
the existence of “punishment PCEs” {σi}ni=1 that guarantee Ui(∅|σi) = 0 for each player
i. Lemma 14 proves that any PCE can be enforced by punishments where every member
of a deviating coalition simultaneously obtains 0.

Lemma 13. Under perfect monitoring, for every player i ∈ N , there is a PCE σi such
that Ui(∅|σi) = 0 when δ > n−2

n−1
.

Proof. We consider two case, |D| = 1 and |D| ≥ 2. The case where |D| = 1 requires
the discount factor to be sufficiently high. The case where there are two or more veto
players (|D| ≥ 2) applies for every discount factor.
Case 1: |D| = 1. Suppose without loss of generality that D consists of player 1. Let
â := (1, 0, . . . , 0) denote the unique core alternative, and a := (0, 1

n−1
, . . . , 1

n−1
) denote

the alternative that equally divides the total payoff among all non-veto players.
For i ̸= 1, let σi be the plan that specifies the core alternative â as default after

every history, so each σi is a PCE that satisfies Ui(∅|σi) = 0

For i = 1, let σ1 be the plan that specifies a on path, and â at any history where
blocking has occurred in the past. Note that U1(∅|σ1) = 0. We will verify that σ1 is a
PCE. No coalition can profitably block once continuation play reverts back to the core
alternative. On the path of play, consider a winning coalition C ∈ W blocking and
choosing alternative a′. Since the game is non-dictatorial, if C is a winning coalition,
player 1 cannot be its only member. Let j ̸= 1 be a player in C. Since a′j ≤ 1, we have

(1− δ)a′j + δ0 ≤ 1− δ ≤ 1

n− 1

so player j prefers following the plan σ1 over blocking and reverting to the core alter-
native. As a result, no coalition C can profitably block the plan σ1 at any history, so
σ1 is a PCE.
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Case 2: |D| ≥ 2. Without loss of generality, suppose {1, 2} ⊆ D. Let a1 := (1, 0, . . . , 0)

and a2 := (0, 1, 0, . . . , 0) be two alternatives that allocate all payoff to player 1 and 2,
respectively. It follows that both a1 and a2 are core alternatives.

Let σ1 be the plan that specifies a2 at all histories; for all i ̸= 1, let σi be the
plan that specifies a1 at all histories. Each σi is a PCE, and Ui(∅|σi) = 0 for every
i ∈ N .

Lemma 14. Suppose U is the set of PCE-supportable payoff profiles. For each player
i ∈ N , let ui := minu∈U ui be player i’s smallest possible payoff from PCEs. There is a
stationary PCE with payoff profile a if and only if for every coalition C and alternative
a′ ∈ EC(a), there is a player i ∈ C such that

(1− δ)a′i + δui ≤ ai (16)

Proof. To see the “only if” direction, suppose (16) fails for some coalition C and a′ ∈
EC(a). In other words, suppose there exists a coalition C and alternative a′ such that

(1− δ)a′i + δui > ai for all i ∈ C.

Towards a contradiction, suppose also that there exists a stationary PCE σ that sup-
ports payoff a. Since σ is a PCE, it follows that Ui(h|σ) ≥ ui for every i ∈ C and all
h ∈ H. As a result, for every i ∈ C,

(1− δ)a′i + δUi(a
′, {C}|σ) ≥ (1− δ)a′i + δui > ai.

Moreover, since σ is stationary, it always plays a on path. The inequality above then
implies that (a′, C) is a profitable block for coalition C on path, contradicting σ being
a stationary PCE.

For the “if” direction, (16) implies that for every coalition C and alternative a′ ∈
EC(a), there exits a player i[a′, C] and a PCE σ[a′, C] such that

(1− δ)a′i[a′,C] + δUi[a′,C]

(
∅ | σ[a′, C]

)
≤ ai[a′,C]. (17)

Since the stage game exhibits default-independent power, by Theorem 2, we can with-
out loss assume that each σ[a′, C] is a stationary PCE.

Consider a plan σ∗ that specifies a on path, but switches to σ[a′, C)] if coalition
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C blocks to implement a′. Inequality (17) implies that on path, no coalition can find
profitably block. In addition, the fact that each σ[a′, C] is a PCE ensures that after
any off-path history, no coalition can profitably block. Finally, σ is also stationary
since it is stationary on path, and each σ[a′, C] is also stationary. Therefore, σ is a
stationary PCE that supports payoff a.

Proof of Proposition 5.
Statement (a). Set δ = n−2

n−1
. By Lemma 13, there exist PCEs {σi : i ∈ N} satisfying

Ui(∅|σi) = 0 for all i ∈ N . It is straightforward to see that no players shared aligned
payoffs in the stage game; in addition, no single player can form a winning coalition
since the game is non-dictatorial. It follows that each player i’s individual minmax is
vi = 0. Moreover, this minmax payoff is achieved by the PCE σi.

By Lemma 14, in order for a payoff profile u to be supported by a stationary PCE,
it is necessary and sufficient that for every winning coalition C ∈ W , there exist no
alternative a′ ∈ EC(a) such that

(1− δ)a′i + δ · 0 = (1− δ)a′i > ui for all i ∈ C. (18)

Note that the condition above is equivalent to
∑

i∈C ui ≥ 1− δ for every C ∈ W , since
if
∑

i∈C ui < (1− δ) · 1 for some coalition C ∈ W , there would be a certain a′ ∈ EC(u)

representing a division of total payoff 1 among players in C, such that (18) holds for
every i ∈ C. It follows that a payoff profile u is supportable by a stationary PCE if
and only if

∑
i∈C ui ≥ 1 − δ for every C ∈ W . Finally, Theorem 2 implies that this

same set is also the set of PCE-supportable payoff profiles.

Statement (b). Because a winning coalition can obtain the entire dollar by blocking,
its minmax value is 1. This statement then follows immediately from Theorem 5.

Statement (c). Let Ŵ denote the set of minimal winning coalitions. By definition,
Ŵ ⊆ W so ∩C∈WC ⊆ ∩C∈ŴC. Furthermore, ∩C∈ŴC ⊆ ∩C∈WC, since otherwise there
exists i ∈ ∩C∈ŴC and C̃ ∈ W such that i /∈ C̃, but this would lead to a contradiction
since C̃ must contains a winning coalition Ĉ, and i ∈ Ĉ. So ∩C∈ŴC = ∩C∈WC = D.
By Theorem 5, every C ∈ Ŵ obtains total payoff 1. This implies the total payoff for
players in D is 1.
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