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Abstract

We provide a universal condition for rationalizability by risk-averse expected utility preference in a 
demand-based framework with multiple commodities. Our test can be viewed as a natural counterpart of a 
classical test of expected utility, due to Fishburn (1975), in a demand setting.
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1. Introduction

The recent contribution of Kubler et al. (2014) provides a GARP-like test for risk-averse 
expected utility maximization in a contingent-consumption environment. In an environment with 
a single consumption good and finite states of the world, they establish an acyclicity condition 
on observed data which is both necessary and sufficient for a finite list of observed price and 
consumption pairs to be consistent with the hypothesis of expected utility maximization. Thus, 
their paper provides a counterpart of the classical work of Afriat (1967) with the added restriction 
that rationalizations be risk-averse expected utility.
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As Kubler et al. (2014) note, their test is universal in nature, removing all existential quan-
tification. Their test amounts to verifying that the product of certain cycles of risk-neutral prices 
be bounded above by one. Our aim in this note is to provide a different universal test. Our test 
should be distinguished from the Kubler et al. (2014) test in three ways. First, it applies to any 
finite number of consumption goods, whereas the test of Kubler et al. (2014) only applies for 
a single consumption good. Secondly, our test is intimately tied to the classical von Neumann–
Morgenstern axioms of expected utility theory, and thus has a simple economic intuition. On the 
other hand, our test involves universal quantification over a potentially infinite number of objects, 
while the test in Kubler et al. (2014) can be reduced to universal quantification over a finite set.

We emphasize that what we mean by test is a method for falsifying the model with directly 
observable data. In other words, we say a model is testable if whenever data are inconsistent with 
the model, they can be demonstrated to be inconsistent. In this sense of the term test, a demon-
stration is distinct from an algorithm which would find this falsifying certificate. Hence, a test in 
our sense is not intended to be useful from a computational perspective, and as far as we can tell, 
ours is not in general. Indeed; there are already practical algorithms for determining when the 
expected utility model is falsified in our context. Rather, such a test is important for understand-
ing the economic content of the model, by specifying a condition stated in terms of data alone, 
which does not reference unobservable concepts such as utilities or marginal rates of substitu-
tion. As a point of comparison, the work of Richter (1966) can be understood as providing the 
testable restrictions of the preference maximization hypothesis; however, no general algorithm 
would exist in Richter’s case either.1

Our test is perhaps most closely related to an early revealed preference test of expected utility 
due to Fishburn (1975). Fishburn constructs a test for an abstract environment of choice over 
lotteries with finite support. In his setting, one observes a finite set of binary comparisons; some 
are weak, and some are strict. Fishburn provides necessary and sufficient conditions for there to 
exist an expected utility ranking which extends the observed binary comparisons. Imagine that 
we observe lottery lk weakly preferred to lottery l′k for k = 1, . . . , g, and lk strictly preferred to l′k
for k = g + 1, . . . , K . Fishburn establishes that these observations are consistent with expected 
utility maximization if there is no probability distribution over {1, . . . , K} which puts positive 
probability on {g + 1, . . . , K}, and for which the mixture of the lk’s under this probability dis-
tribution is equal to the mixture of the l′k’s. Fishburn’s test can be viewed as claiming that the 
smallest possible extension of the observed relations satisfying both independence and transitiv-
ity leads to no contradiction. We stress that Fishburn’s test also presents with no algorithm: no 
recipe is given for finding the probability distribution.

In our case, we have n commodities, and a finite set of states � = {ω|1, 2 . . . , S}. We observe 
a finite list of prices and contingent consumption bundles chosen at those prices (xk, pk), k ∈
{1, . . .K}. Consumption in state ω at observation k is of the form xk

ω ∈R
n+. Probabilities over �

are known and are given by the full support distribution π .
We first ask: What could reveal a violation of the joint hypothesis of expected utility and risk 

aversion in this context? There are only a finite set of states of the world, with known probabil-
ities, but if the choices were rationalizable by an expected utility preference, there would be a 
natural extension to a preference over the set of all simple lotteries. One such violation would 
look like the following: suppose that for each xk , there is some yk which is feasible at prices pk . 

1 In the special case where budgets are given by linear inequalities and preference satisfies monotonicity, an algorithm 
exists for Richter’s test, namely the Afriat test. Here we refer to the abstract budget environment.
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In other words, the induced lottery lxk is revealed preferred to the induced lottery lyk . And sup-
pose that there is some g for which yg is strictly cheaper than xg at prices pg . In other words, 
the induced lottery lxg is revealed strictly preferred to the induced lottery lyg . Now, suppose we 
can find, for each k, a lottery l′k which is a mean-preserving spread of lyk . If the data were ratio-
nalizable by a risk-averse expected utility preference, the lottery lxk would be preferred to l′k for 
all k (and lxg would be strictly preferred to l′g).

We now have a set of K pairs of lotteries (lxk , l′k) which could be obtained in the preceding 
fashion. These data can be tested with Fishburn’s condition. If, in fact, they violate Fishburn’s 
condition, then we know that the original data cannot be expected utility rationalizable.

So far this is very simple. However, in the demand setting, for each observation (pk, xk), 
there are usually infinitely many candidates for the above yk, and for each yk , an infinite num-
ber of possible mean-preserving spreads l′k . This would result in an infinite number of possible 
{(lxk , l′k)}Kk=1 sets. While the Fishburn condition is sufficient to ensure each {(lxk , l′k)}Kk=1 set has 
its own preference extension, it has nothing to say about whether or not there is a single prefer-
ence extension for the infinitely many revealed preference relations.

In fact, what we show is the following: If the data are not risk-averse expected utility ra-
tionalizable, then there exists at least one set, {(lxk , l′k)}Kk=1, as above, that violates Fishburn’s 
condition. In addition, they can be chosen to violate Fishburn’s condition in a very stark way: 
one must only test the uniform lottery over {1, . . . , K}.

Moreover, the support of each l′k can be chosen to consist only of consumption that was 
actually observed demanded at some state; i.e. the support can be chosen amongst elements 
of the form xk

ω. This resonates with the idea from Polisson et al. (2015), who observe that in 
order to rationalize data, it is both necessary and sufficient to maintain consistency on the set of 
minimally extended “imaginary” data, constructed from those actually observed. However, while 
Polisson et al. (2015) is concerned with developing Afriat-style algorithms (see Afriat, 1967) for 
testing decision models with money lotteries, our focus is developing universal statements about 
data from lotteries of general consumption bundles, which provides direct falsification of the 
expected utility model under risk aversion.

It is important to note that due to the infinite nature of our test, our contribution lies not in 
providing a procedure to be implemented to check actual data; for such a test, the readers are 
directed to the work by Green and Srivastava (1986). Instead, the main contribution of our test 
is that it extends the intuition of the Fishburn test to demand-based observations: whenever the 
smallest possible extension of the observed relations satisfying both independence and transitiv-
ity leads to no contradiction, the data are rationalizable by risk-averse expected utility preference. 
In addition, the test by Green and Srivastava involves theoretical objects that are not directly ob-
servable, while our conditions directly characterize exactly which types of data are ruled out 
by the hypothesis of expected utility maximization, and thus can be interpreted as its UNCAF 
axiomatization, when observations are made in a demand-based framework.2

The idea of the proof is remarkably simple, and is a simple restatement of the dual set of 
linear inequalities stemming from the Afriat-style inequalities of Green and Srivastava (1986) or 
Varian (1983).

A host of other interesting papers have recently studied choice data in the context of expected 
utility maximization. In particular, Echenique and Saito (2015) investigate the subjective ex-

2 UNCAF stands for universal negation of conjunction of atomic formulas. Chambers et al. (2014) demonstrate that 
theories which make no non-empirical predictions are exactly those which have UNCAF axiomatizations.
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pected utility version of the model, which forms a kind of analogue of the Kubler et al. (2014)
test. It would be interesting to propose a test of our structure in the subjective expected util-
ity framework. Epstein (2000) investigates the empirical content of the notion of probabilistic 
sophistication (due to Machina and Schmeidler, 1992), providing a test which can refute the 
hypothesis.

2. The model

We assume that there is a finite state space � = {ω|1, 2, . . . , S} and a finite collection of 
consumption goods, labeled 1, 2, . . . , N . The agent is given an objective probability distribution 
over states π ∈ �(�), where for all ω ∈ �, Pr(ω) = πω > 0. An observation is a pair (p, x), 
where p ∈R

SN++ is a list of the prices of all N consumption goods under all S possible states, and 
x ∈R

SN+ details the purchased amount of each consumption good under each state of the world.3

We assume that our data set D consists of a K tuple of (x, p) pairs, i.e. D = {(xk, pk)Kk=1}. K is 
assumed finite.

In particular,

xk =

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1
...

xk
ω
...

xk
S

⎤
⎥⎥⎥⎥⎥⎥⎦

pk =

⎡
⎢⎢⎢⎢⎢⎢⎣

pk
1
...

pk
ω
...

pk
S

⎤
⎥⎥⎥⎥⎥⎥⎦

and

xk
ω =

⎡
⎢⎣

xk
ω,1
...

xk
ω,N

⎤
⎥⎦ pk

ω =
⎡
⎢⎣

pk
ω,1
...

pk
ω,N

⎤
⎥⎦

where for all ω, k, n, xk
ω,n ≥ 0 and pk

ω,n > 0. Each xk is referred to as a contingent consumption 
bundle, and xk

ω a state-specific consumption bundle. We use C = R
NS+ to denote the set of all 

contingent consumption bundles.
We say that D is risk-averse expected utility rationalizable if there exists a concave, continu-

ous, and increasing u :RN+ →R for which for all k, xk solves

max
x∈RSN+

∑
ω

πωu(xω)

subject to pk · x ≤ pk · xk .4

Given a data set D, we collect all the state-specific consumption bundles xk
ω observed in the 

data:

X = {x ∈R
N+|x = xk

ω for some k and ω where (xk,pk) ∈D}.
Denote the set of all simple lotteries on RN+ with finite support by �s(R

N+). Denote the set of all 
lotteries on X by �(X ). Note that �(X ) ⊆ �s(R

N+).

3 As usual, R++ denotes the positive reals, and R+ the nonnegative reals.
4 We take increasing to mean that if x ≥ y and x 	= y, then u(x) > u(y).
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Any contingent consumption bundle xk ∈ C induces an element lxk ∈ �(X ), which places 
probability πω on xk

ω . As such, a pair of revealed preference relations 
C and �C can be defined 
on �(X ):

For x, y ∈ C, lx 
C ly if x = xk for some (xk, pk) ∈ D and pk · y ≤ pk · x. For x, y ∈ C, 
lx �C ly if x = xk for some (xk, pk) ∈ D and pk · y < pk · x. 
C is intended to represented a 
revealed weak preference and �C a revealed strict preference.

Moreover, to test the hypothesis of risk aversion, it is natural to extend the above revealed 
preference relations to �s(R

N+). For example, suppose that lx 
C ly , and l ∈ �s(R
N+) can be 

obtained by a sequence of mean-preserving spreads of ly .5 If our decision maker’s behavior 
is consistent with risk-averse expected utility maximization, it follows that lx should also be 
preferred to l. These ideas motivate the following definitions.

For l, l′ ∈ �s(R
N+), l 
m.p.s. l′ if l′ can be obtained by a series of mean-preserving spreads 

of l. Define the pair of binary relations 
R and �R on �s(R
N+) by

l 
R l′′ if there exists l′ such that l 
C l′ 
m.p.s. l′′

and

l �R l′′ if there exists l′ such that l �C l′ 
m.p.s. l′′

If the agent’s behavior is consistent with risk-averse expected utility maximization, the pair 
of relations 
R, �R will necessarily satisfy Fishburn’s condition on �s(R

N+); i.e. if lk 
R l′k
for k = 1, . . . , g, and lk �R l′k for k = g + 1, . . . , K , then there are no {μi}Ki=1 ⊆ R

K+ , with ∑K
k=g+1 μk > 0, and 

∑K
1 μklk = ∑K

1 μkl
′
k . As we show in our main result, it turns out that 

a sufficient condition for the data D to conform with risk aversion and expected utility maxi-
mization is that the restriction of 
R, �R to �(X ) satisfies Fishburn’s condition.

Theorem 1. For every data set D = {(xk, pk)Kk=1}, the following are equivalent:

I For any {l′k}Kk=1 ⊆ �(X ) for which lxk 
R l′k for all k, there is no {μk}Kk=1 ⊆ R
K+ for which ∑

{k:lk�Rl′k} μk > 0 and 
∑K

1 μklxk = ∑K
1 μkl

′
k .

II Suppose that for each k ∈ {1, . . . , K} and ω ∈ �, Sk
ω : {1, . . . , K} × � → R+ is a function, 

such that for all k, ω, 
∑

g,τ Sk
ω(g, τ) = πω = ∑

g,τ S
g
τ (k, ω). If, in addition, for all k,

pk · xk ≥ pk ·
(∑

g

∑
τ Sk

ω(g, τ )x
g
τ

πω

)
ω∈�

then there is no k for which pk · xk > pk ·
(∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω

)
ω∈�

.6

III For all ω, τ ∈ � and k, g ∈ {1, . . . , K} there exist uk
w, ug

τ ≥ 0 and λk, λg > 0 s.t. uk
ω ≤

u
g
τ + λg

p
g
τ

πτ
· (xk

ω − x
g
τ ).7

5 That is, if there exists a random variable ε such that l d= ly + ε with E(ε|ly ) = 0. “ d=” here means “has the same 
distribution as”. See Rothschild and Stiglitz (1970) for more details.

6
(∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω

)
ω∈�

=
(∑

g

∑
τ Sk

1 (g,τ )x
g
τ

π1
, . . . ,

∑
g

∑
τ Sk

S
(g,τ )x

g
τ

πS

)
i.e.

∑
g

∑
τ Sk

ω(g,τ )x
g
τ

πω
is the consumption 

in state ω.
7 Green and Srivistava’s proof of this statement assumes the non-emptiness of u’s superdifferential over Rn+; however, 

it is easy to modify their proof even with empty superdifferential on the boundary. Essentially, whenever xg is known 
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IV Data set D is risk-averse expected utility rationalizable.

Before proceeding, we comment on cases I and II, which are our contribution. Case I con-
siders the smallest possible preference extension “consistent” with the data, risk-aversion, and 
the expected utility hypothesis. It claims that if this extension is meaningfully defined; in that 
we cannot derive that a lottery l is strictly preferred to itself, then the data are expected utility 
rationalizable. Importantly, we only need to consider lotteries whose support are actual observed 
consumption bundles. This can be seen as a natural analogue of Fishburn’s condition as applied 
to lxk and l′k .

Case II demonstrates a dual system of linear inequalities to the inequalities of case III, which 
was derived previously by Green and Srivastava (1986). The interpretation of the terms Sk

ω is as 
a system of probability weights. To obtain some intuition on Case II, suppose that the inequal-
ities therein are satisfied, then one can find a contradiction as follows: For each k, by demand 
behavior, the inequalities in Case II imply that the lottery lyk induced by the contingent consump-

tion bundle 
(∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω

)
ω∈�

is revealed weakly worse than the lottery lxk induced by xk , 

with strict preference for at least one k. Observe that lyk is a lottery that places probability πω

on 
∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω
. Since 

∑
g,τ Sk

ω(g, τ) = πω, simple algebra (included in the proof) shows that 

the lottery l′k , which places probability weight Sk
ω(g, τ) on xg

τ , is a mean-preserving spread of lyk . 
If the data were really consistent with the hypothesis of risk-averse expected utility maximiza-
tion, transitivity would imply that for each k, the lottery l′k should be worse than the lottery lxk , 
strictly so for at least one k. We now have in total K revealed preference relations between the 
pairs of lotteries lxk and l′k . As we demonstrate in the proof, the condition 

∑
g,τ S

g
τ (k, ω) = πω

then allows us to find a violation by applying the condition from Fishburn (1975) on the lotteries 
lxk and l′k across all k.

The following example illustrates the theorem.

Example 1. Consider the case k ∈ {1, 2}, � = {1, 2} and N = 2: There are 2 observations, each 
consisting of the price and purchased quantity for the consumptions good under 2 possible states 
of the world. Suppose each of the two states are equally likely; π1 = π2 = .5. Suppose we ob-
serve:

(x1,p1) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
0
10
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
10
5

10

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (x2,p2) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

4
2
6
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
8
5
10

⎤
⎥⎥⎦

⎞
⎟⎟⎠

In this case there is no violation of GARP. However, since the hypothesis of risk-averse EU 
preference is stronger than GARP, we show that this case still violates our conditions.

Violation of Statement I: The induced lotteries by x1 and x2 are lx1 = ((10, 5), 1/2; (0, 0),

1/2) and lx2 = ((4, 2), 1/2; (6, 3), 1/2), respectively. To see that this is a violation of statement I, 
consider contingent consumption bundles y1 = y2 = ((5, 2.5); (5, 2.5)) which induce ly1 = ly2 =

to be a utility maximizer, we can always find ∇u(x
g
τ ) in the superdifferential of u for which ∇u(x

g
τ ) = λg

p
g
τ

πτ
(see 

Theorem 28.3 in Rockafellar, 1997). So uk
ω ≤ u

g
τ + ∇u(x

g
τ ) · (xk

ω − x
g
τ ) = u

g
τ + λg

p
g
τ · (xk

ω − x
g
τ ).
πτ
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((5, 2.5), 1). Clearly p1 · x1 ≥ p1 · y1, and p2 · x2 > p2 · y2. So by definition lx1 
C ly1 and 
lx2 �C ly2 .

Observe that the lottery l′1 = ((4, 2), 1/2; (6, 3), 1/2) is a mean-preserving spread of ly1 and 
the lottery l′2 = ((10, 5), 1/2; (0, 0), 1/2) is a mean-preserving spread of ly2 . By definition lx1 
R

l′1 and lx2 �R l′2. However,

1

2
lx1 + 1

2
lx2 = 1

2
l′1 + 1

2
l′2

This constitutes a violation of Statement I.

Violation of Statement II:
Set S1

1(2, 1) = S2
1(1, 1) = 1

5 , S1
1(2, 2) = S2

2(1, 1) = 3
10 , S1

2(2, 1) = S2
1(1, 2) = 3

7 , and 
S1

2(2, 2) = S2
2(1, 2) = 1

14 .
To solve:⎡

⎢⎢⎣
0
0

10
5

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

5
10
5

10

⎤
⎥⎥⎦ > 2 ·

⎡
⎢⎢⎣

5
10
5
10

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

S1
1(2,1) ∗ 4 + S1

1(2,2) ∗ 6

S1
1(2,1) ∗ 2 + S1

1(2,2) ∗ 3

S1
2(2,1) ∗ 4 + S1

2(2,2) ∗ 6

S1
2(2,1) ∗ 2 + S1

2(2,2) ∗ 3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

4
2
6
3

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

4
8
5
10

⎤
⎥⎥⎦ ≥ 2 ·

⎡
⎢⎢⎣

4
8
5

10

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

S2
1(1,1) ∗ 0 + S2

1(1,2) ∗ 10

S2
1(1,1) ∗ 0 + S2

1(1,2) ∗ 5

S2
2(1,1) ∗ 0 + S2

2(1,2) ∗ 10

S2
2(1,1) ∗ 0 + S2

2(1,2) ∗ 5

⎤
⎥⎥⎥⎦

S1
1(2,1) + S1

1(2,2) = S1
2(2,1) + S1

2(2,2) = 1

2

A couple of observations are in order. It can be shown that both (I) and (II) of our prop-
erties imply GARP. Suppose by means of contradiction that GARP is violated, i.e. that there 
are contingent consumption bundles zk1 , . . . , zkm such that pk1 · zk1 ≥ pk1 · zk2 , pk2 · zk2 ≥
pk2 · zk3 , . . . , pkm · zkm > pkm · zk1 , where without loss we may assume there is no repetition 
in the cycle. This implies lzk1 
C lzk2 
C . . . 
C lzkm �C lzk1 .

To see that (I) implies GARP, observe that since 
C implies 
R and �C implies �R , we have 
lzk1 
R lzk2 
R . . . lzkm �R lzk1 . Let lxi = lzki and l′i = l

zki+1 as in property (I), then a uniform 
distribution μ over the indices i = 1, 2, . . .m constitutes a violation of (I).

For (II), consider the following set of Sk
ω(g, τ)’s in property II: For k = ki for some i (that is, 

if k shows up in the cycle)

Ski
ω (g, τ ) =

{
πω if g = ki+1 and τ = ω

0 otherwise

and for k 	= ki for any i (k not in the cycle)

Sk
ω(g, τ ) =

{
πω if g = k and τ = ω

0 otherwise

Then the cycle condition gives a violation of property (II), a contradiction.
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Finally, we wish to emphasize that the result is by no means a trivial consequence of Fishburn
(1975). In his paper, he also considers the issue of testing the consistency of revealed preference 
relations with functional restrictions on the von Neumann–Morgenstern utility index (as we wish 
to test for concavity and monotonicity). Specifically, he wants to test when observed data are 
consistent with the utility index u belonging to some convex cone U . Again, he assumes a finite 
number of relations (which does not hold in our context). A natural guess is that if lk is revealed 
weakly preferred to l′k for k = 1, . . . , g and revealed strictly preferred to l′k for k = g + 1, . . . , K , 
then if there is μ ∈ �(K) for which μ({g + 1, . . . , K}) > 0 and u · (∑k μkl

′
k

) ≥ u · (∑k μklk
)

for all u ∈ U , then the observed data are inconsistent with expected utility maximization with 
utility index u ∈ U .8 In our case, for example, we would consider the cone of concave, nonde-
creasing and locally non-satiated functions; the claim would then be that 

∑
k μkl

′
k second order 

stochastically dominates 
∑

k μklk . Of course, the existence of such a μ refutes the hypothesis 
of expected utility rationalization with u ∈ U , but for technical reasons, the converse statement 
need not hold in general (it would hold, for example, if the cone U were polyhedral, which is 
not the case here). However, we are able to show that owing to the special structure of linear 
pricing, a converse statement along the lines of this idea does in fact hold in the demand-based 
environment. In fact, it holds even though observed revealed preference relations are infinite.

Proof. (III ⇔ IV)
The equivalence of III and IV is due to Green and Srivastava (1986).

(II ⇔ III)
We proceed to show that II and III are equivalent. To this end, observe that III does not hold if 
and only if there is no solution to the following linear system.9 Ab ≥ 0 and λ � 0, where

b =

⎡
⎢⎢⎢⎢⎢⎣

u1
1

u1
2
...

uK
S

λ

⎤
⎥⎥⎥⎥⎥⎦ λ =

⎡
⎢⎣

λ1
...

λK

⎤
⎥⎦

and A is equal to the top two quadrants of the matrix below:

8 Here we continue to use x and z for lotteries, and dot product for integration with respect to measures.
9 Vector inequalities are x ≥ y if xi ≥ yi for all i and x � y if xi > yi for all i.
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Fig. 1. η matrix. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

By construction of T and a standard theorem of the alternative (see for example Mangasarian, 
1994, p. 30), the nonexistence of b, λ such that Ab ≥ 0 and λ � 0, is equivalent to the existence 
of η ≥ 0 such that T ′η ≤ 0, where

η =

⎡
⎢⎢⎢⎣

η1,1,1,1
...

ηK,S,K,S

η′

⎤
⎥⎥⎥⎦ η′ =

⎡
⎢⎣

η′
1
...

η′
K

⎤
⎥⎦

such that at least one η′
k > 0.

This is equivalent to

∑
ω

∑
(g,τ )	=(k,ω)

ηk,ω,g,τ

pk
ω

πω

· (xg
τ − xk

ω) ≤ 0 ∀ k (1)

with strict inequality for at least one k, and∑
(g,τ )	=(k,ω)

ηk,ω,g,τ =
∑

(g,τ )	=(k,ω)

ηg,τ,k,ω ∀ k,ω (2)

We claim that a solution to systems (1) and (2), implies the existence of γk,ω,g,τ ≥ 0 so that

∑
ω

∑
(g,τ )

γk,ω,g,τ

pk
ω

πω

· (xg
τ − xk

ω) ≤ 0 ∀ k (3)

∑
(g,τ )

γk,ω,g,τ =
∑
(g,τ )

γg,τ,k,ω = πω ∀ k,ω (4)

with at least one inequality in (3) being strict, effectively showing (3) and (4) are equivalent to 
(1) and (2).

To see this, list the ηk,ω,g,τ ’s from systems (1) and (2) as in Fig. 1. (Notice that system (2)
ensures that columns and rows passing through the same diagonal element, like the column and 
row in red and blue boxes, sum up to the same number.) We now construct a new matrix, say, �, 
with generic element λk,ω,g,τ by raising all diagonal entries of the η matrix, leaving all remaining 
entries the same, so that there is some M > 0 for which 

∑
ηk,ω,g,τ = ∑

ηg,τ,k,ω =
(g,τ ) (g,τ )
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Mπω .10 Since pk
ω · (xk

ω − xk
ω) = 0, and since the diagonal element shows up both in the column 

and row, the resulting η matrix satisfies (3) (with λ’s in place of η’s), and the first equality in 
system (4). Finally, the γ terms are constructed by dividing each element of the matrix � by M .

Rearranging inequalities (3) gives

∑
ω

∑
g

∑
τ

γk,ω,g,τ

pk
ω

πω

· (xg
τ − xk

ω) =
∑
ω

pk
ω · (∑

g

∑
τ

γk,ω,g,τ x
g
τ

πω

−
∑
g

∑
τ

γk,ω,g,τ x
k
ω

πω

)

=
∑
ω

pk
ω · (∑

g

∑
τ

γk,ω,g,τ x
g
τ

πω

− xk
ω

) ≤ 0

with at least one strict inequality. The second equality follows from (4). This together with (4)
establishes the equivalence of II and III, by taking Sk

ω(g, τ) = γk,ω,g,τ .

(IV ⇒ I)
That IV implies I is straightforward. Let u :RN+ →R be any concave, nondecreasing and locally 
non-satiated utility function. For lottery l, let u · l denote the expected utility of l, 

∑
x∈l l(x)u(x).

Suppose that D is risk-averse expected utility rationalizable by u, and suppose by means of 
contradiction that statement I is not true.

For all l′k ∈ �s(R
N+), lxk 
R l′k implies u · · · lxk ≥ u · l′k , and lxk �R l′k implies u · lxk > u · l′k . 

Since expected utility is linear in lottery mixtures, we have that u · (∑K
1 μklxk ) > u · (∑K

1 μkl
′
k), 

a contradiction to 
∑K

1 μklxk = ∑K
1 μkl

′
k .

(I ⇒ II)
We now show that I implies II. Suppose by means of contradiction that there is a solution to the 
system listed in II. We will show that this implies I is false. Let

yk =
(∑

g

∑
τ Sk

ω(g, τ )x
g
τ

πω

)
ω∈�

By II, we have pk · xk ≥ pk · yk ∀ k with > for at least one k. By definition of 
C , lxk 
C lyk , 
with �C for at least one k.

Next, observe that lyk places probability πω at 
∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω
for each ω. Let l′k be the lottery 

that puts probability 
∑

ω Sk
ω(g, τ) on xg

τ . Since 
∑

g,τ Sk
ω(g, τ) = πω, l′k can be obtained from lyk

by spreading, for each ω, the probability πω placed on 
∑

g

∑
τ Sk

ω(g,τ )x
g
τ

πω
to probabilities Sk

ω(g, τ)’s 

on xg
τ ’s, (g, τ) ∈ {1, · · · , K} × �. Moreover, 

∑
g

∑
τ Sk

ω(g,τ )x
g
τ

πω
is a weighted average of the xg

τ ’s 

by weights Sk
ω(g, τ)’s. So for each ω the spread described above is a mean-preserving spread in 

the sense of Rothschild and Stiglitz (1970), and l′k can be obtained from lyk by a finite number of 
mean-preserving spread.

By definition of 
R , we have obtained lotteries lxk and l′k such that lxk 
R l′k ∀ k, with �R

for at least one k. In order to contradict I, it only remains now to find {μk}Kk=1 such that μk ≥ 0, ∑
{k:lk�Rl′k} μk > 0 and 

∑K
1 μklxk = ∑K

1 μkl
′
k . As it turns out, it suffices to take μk = 1

K
for 

each k:

10 One simple way of doing this is to pick M large enough so that minω πωM > maxω
∑

(g,τ )	=(k,ω) ηk,ω,g,τ .
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The lottery 
∑K

k=1
1
K

l′k places probability 1
K

∑
k

∑
ω Sk

ω(g, τ) = πτ

K
on each xg

τ , (g, τ) ∈
{1, · · · , K} × �, while the lottery 

∑K
k=1

1
K

lxk , places πτ

K
on each x

g
τ . So 

∑K
k=1

1
K

l′k =∑K
k=1

1
K

lxk . This constitutes a contradiction to I (in particular, the contradiction comes in the 
form of a uniform distribution over the observations 1, . . . , K). �
3. Conclusion

We have developed a universal test for the risk-averse expected utility environment with many 
commodities. Of interest for future research would be an analogous test in the subjective expected 
utility context, following the work of Echenique and Saito (2015). The difficulty inherent in this 
approach rests in the fact that the inequalities in III of Theorem 1 are polynomial, rather than 
linear. While we have some conjectures on what might be an appropriate test, these are very 
speculative.

A final remark is in order. Observe that when |�| = 1 (and hence πω = 1 for ω for which 
� = {ω}), we are back to the environment of Afriat (1967). In such an environment, the function 
S referenced in Theorem 1, condition II can be taken to be a function of {1, . . . , K} alone. And 
condition II in this case tells us that 

∑
k Sk(l) = ∑

k Sl(k) = 1 for each l; in other words, viewing 
S as a matrix, the matrix is bistochastic. Now, one of the contributions of Afriat (1967) is that 
condition II is necessary and sufficient for concave rationalization when the matrix S is restricted 
to be a permutation matrix; that is, a matrix consisting solely of zeroes and ones. Of course, it 
is well-known that the permutation matrices are the extreme points of the set of bistochastic 
matrices (this is the celebrated theorem of Birkhoff, 1946 and von Neumann, 1953). A natural 
conjecture is that a similar statement may hold here; that it is enough to check the extreme points 
of the set of S functions satisfying condition II of Theorem 1.
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