
Online Appendix for “Credible Persuasion”

B.1 Relationship to Rochet (1987)
The uS-cyclical monotonicity condition in our characterization closely resembles the cyclical
monotonicity condition for implementing transfers in Rochet (1987). The reader might wonder
why cyclical monotonicity arises in our setting despite the lack of transfers. The connection is
best summarized by the following three equivalent conditions from optimal transport theory
(see, for example, Theorem 5.10 of Villani (2008)).

Kantorovich Duality. Suppose X and Y are both finite sets, and u : X × Y → R is a
real-valued function. Let µ be a probability measure on X and ν be a probability measure on
Y , and Π(µ, ν) be the set of probability measures on X × Y such that the marginals on X and
Y are µ and ν, respectively. Then for any π∗ ∈ Π(µ, ν), the following three statements are
equivalent:

1. π∗ ∈ argmaxπ∈Π(µ,ν)

∑
x,y π(x, y)u(x, y);

2. π∗ is u-cyclically monotone. That is, for any n and (x1, y1), ..., (xn, yn) ∈ supp(π∗),

n∑

i=1

u(xi, yi) ≥
n∑

i=1

u(xi, yi+1).

3. There exists ψ : Y → R such that for any (x, y) ∈ supp(π∗) and any y′ ∈ Y ,23

u(x, y)− ψ(y) ≥ u(x, y′)− ψ(y′).

Our Theorem 1 builds on the equivalence between 1 and 2 in the Kantorovich duality
theorem above to show the equivalence between credibility and uS-cyclical monotonicity.

Rochet (1987)’s classic result on implementation with transfers follows from the equivalence
between 2 and 3. To see this, consider a principal-agent problem where the agent’s private
type space is Θ with full-support prior µ0, and the principal’s action space is A. The agent’s
payoff is u(θ, a) − t, where t is the transfer she makes to the principal. Given an allocation
rule q : Θ → A, let vq(θ, θ′) ≡ u(θ, q(θ′)) denote the payoff that a type-θ agent obtains from
the allocation intended for type θ′. Let X = Y = Θ and µ = ν = µ0 in the Kantorovich

23This statement can also be equivalently written as: there exists φ : X → R and ψ : Y → R, such that
φ(x) + ψ(y) ≥ u(x, y) for all x and y, with equality for (x, y) in the support of π∗.
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duality theorem above, and consider the distribution π∗ ∈ Π(µ, ν) defined by

π∗(θ, θ′) =





µ0(θ) if θ = θ′

0 otherwise

By the equivalence of 2 and 3 in the Kantorovich duality theorem, π∗ is vq-cyclically monotone
if and only if there exists ψ : Θ → R such that for all θ, θ′ ∈ Θ, vq(θ, θ)−ψ(θ) ≥ vq(θ, θ′)−ψ(θ′).
That is,

u(θ, q(θ))− ψ(θ) ≥ u(θ, q(θ′))− ψ(θ′),

so the allocation rule q can be implemented by the transfer rule ψ : Θ → R. The vq-cyclical
monotonicity condition says that for every sequence θ1, ..., θn ∈ Θ with θn+1 ≡ θ1,

n∑

i=1

u(θi, q(θi)) ≥
n∑

i=1

u(θi, q(θi+1)).

This is exactly the cyclical monotonicity condition in Rochet (1987).
When X = Θ is interpreted as the set of an agent’s true types and Y = Θ interpreted as

the set of reported types, the distribution π∗ constructed in the previous paragraph can be
interpreted as the agent’s truthful reporting strategy. Based on this interpretation, Rahman
(2010) uses the duality between 1 and 3 to show that the incentive compatibility of truthful
reporting subject to quota constraints is equivalent to implementability with transfers.

B.2 Finite-Sample Approximation
As discussed in Section 2.1, we interpret our model as one where the Sender designs an in-
formation structure that assigns scores to a large population of realized θ’s; in particular, our
model abstracts away from sampling variation, so there is no uncertainty in the population’s
realized type distribution. In this section we explicitly allow sampling variation by consid-
ering a finite-sample model where the Sender observes N random i.i.d. draws from Θ, and
assigns each realized θ a message m ∈ M , subject to certain message quotas—in particular,
these message quotas substitute for the Sender’s commitment to message distributions in the
continuum model. We will show that credible and R-IC profiles in our continuum model are
approximated by credible and R-IC profiles in the discrete model when the sample size is
large.

Consider a finite i.i.d sample of size N drawn from the type space Θ according to the
prior distribution µ0. The set of all possible empirical distributions over Θ in this N -sample
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captures the sampling variations in the realized type distribution, and can be written as

FN
Θ =

{
f/N : f ∈ N|Θ|,

∑

θ∈Θ

f(θ) = N
}
.

The Sender assigns each realized θ in the N -sample a message m ∈ M , which leads to an
N -sample of messages. Let

FN
M =

{
f/N : f ∈ N|M |,

∑

m∈M

f(m) = N
}

denote the set of N -sample empirical distributions over messages. Lastly, for a pair of state
and message distributions (µ, ν), let

XN(µ, ν) =
{
f/N : f ∈ N|Θ|×|M |,

∑

θ

f(θ, ·) = Nν(·),
∑

m

f(·,m) = Nµ(·)
}

denote the set of N -sample empirical joint distributions over states and messages that have
marginals µ and ν. Notice that XN(µ, ν) '= ∅ if and only if µ ∈ FN

Θ and ν ∈ FN
M .24

Let us now define the N -sample analogue of credible and R-IC profiles. We consider
a Sender who assigns a message m ∈ M to each realized θ ∈ Θ subject to a message quota
νN ∈ FN

M . An N -sample profile is therefore a triple (νN ,φN ,σN), where φN : FN
Θ → ∆(Θ×M)

is a Sender’s strategy that takes every realized empirical distribution over states µN ∈ FN
Θ to

a joint distribution φN(µN) ∈ XN(µN , νN); meanwhile, σN : M → A is a Receiver’s strategy
that assigns an action to each observed message.25

The definitions of Sender credibility and Receiver incentive compatibility in the N -sample
setting mirror those in our continuum model. In particular, we say an N -sample profile
(νN ,φN ,σN) is credible if for each realized empirical distribution over Θ, the Sender always
chooses an optimal assignment of messages subject to the message quotas specified in νN :
(νN ,φN ,σN) is credible if for every µN ∈ FN

Θ ,

φ(µN) ∈ argmax
λN∈X(µN ,νN )

∑

θ,m

λN(θ,m)uS(θ,σ
N(m)).

We say the N -sample profile (νN ,φN ,σN) is Receiver incentive compatible (R-IC) if σN best-
responds to the Sender’s strategy φN . In particular, let PN denote the probability distribution

24Notice that for any f ∈ N|Θ|×|M |, the sum of any row or column has to be integer, so XN (µ, ν) = ∅ if
either µ /∈ FN

Θ or ν /∈ FN
M . On the other hand if µ ∈ FN

Θ and ν ∈ FN
M , a λ ∈ XN (µ, ν) can be constructed

from the so-called Northwest corner rule.
25Note that our formulation of the Sender’s strategy assumes that the Sender conditions her strategy only

on the empirical distribution of the realized N samples, and ignores the identity of each individual sample
point.
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over FN
Θ induced by i.i.d. draws from the prior distribution µ0 ∈ ∆(Θ), and let φN(θ,m|µN)

be the probability assigned to (θ,m) in the joint distribution φN(µN) chosen by the Sender.
The profile (νN ,φN ,σN) is R-IC if

σN ∈ argmax
σ′:M→A

∑

µN∈FN
Θ

PN(µN)
∑

θ,m

φ(θ,m|µN)uR(θ,σ
′(m)).

Proposition 7 below shows that credible and R-IC profiles in the continuum model are
approximated by credible and R-IC profiles in the N -sample model, provided N is sufficiently
large. Note that in the second statement in Proposition 7, we distinguish a strictly credible
profile (λ∗,σ∗) in the continuum model as one where λ∗ is the unique maximizer in Definition 1;
similarly, (λ∗,σ∗) is strictly R-IC if σ∗ is the unique maximizer in Definition 2.

Proposition 7. 1. Let (λ∗,σ∗) be a profile in the continuum model. If for every ε > 0,
there exists a finite credible profile (νN ,φN ,σN) for some sample size N , such that
|νN −λ∗M | < ε, |σN −σ∗| < ε and P (|φN(FN

Θ )−λ∗| < ε) > 1−ε, then (λ∗,σ∗) is credible
and R-IC.

2. Suppose (λ∗,σ∗) is a strictly credible and strictly R-IC profile in the continuum model,
then for each ε > 0 there exists a finite-sample credible and R-IC profile (νN ,φN ,σN)

such that |νN − λ∗M | < ε, |σN − σ∗| < ε and P (|φN(FN
Θ )− λ∗| < ε) > 1− ε.

The first statement in Proposition 7 is analogous to the upper-hemicontinuity of Nash
equilibrium correspondences: if a profile (λ∗,σ∗) in the continuous model can be arbitrarily
approximated by credible and R-IC profiles in the finite model, then profile (λ∗,σ∗) must itself
be credible and R-IC. Conversely, the second statement in Proposition 7 can be interpreted in
a way similar to the lower-hemicontinuity of strict Nash equilibria: if a profile (λ∗,σ∗) in the
continuous model is strictly credible and strictly R-IC, then it can be arbitrarily approximated
by credible and R-IC profiles in the finite model.26

B.2.1 Proof of Proposition 7

For µ ∈ ∆(Θ) and ν ∈ ∆(A), let Λ(µ, ν) ≡ {λ ∈ ∆(Θ× A) : λΘ = µ,λA = ν} denote the set
of joint distributions on Θ× A that with marginals given by µ and ν. The following lemmas
will be useful in our proofs.

26We conjecture that for generic payoffs, an outcome distribution induced by a credible and R-IC profile
can be approximated by their strict counterparts, but we have not been able to identify a proof.
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Lemma 10. The correspondence

B(µ, ν) ≡ argmax
λ∈Λ(µ,ν)

∑

θ,m

λ(θ,m)uS(θ,σ(m))

is upper hemi-continuous with respect to (µ, ν). Thus, the value function

V (µ, ν) ≡ max
λ∈Λ(µ,ν)

∑

θ,m

λ(θ,m)uS(θ,σ(m))

is continuous.

Proof. The first statement follows directly from Theorem 1.50 of Santambrogio (2015). For any
sequence (λk, µk, νk) → (λ, µ, ν) so that λk ∈ B(µk, νk) for all k, we have λ ∈ B(µ, ν). Then
V (µ, ν) =

∑
θ,m λ(θ,m)uS(θ,σ(m)) = limk→∞

∑
θ,m λk(θ,m)uS(θ,σ(m)) = limk→∞ V (νk, νk),

which proves the second statement.

Lemma 11. Suppose µ ∈ FN
Θ and ν ∈ FN

M , then the extreme points of Λ(µ, ν) are contained
in XN(µ, ν).

Proof. Consider the set Y N(µ, ν) = {f ∈ R|Θ|×|M |
+ :

∑
θ f(θ, ·) = Nν(·),

∑
m f(·,m) = Nµ(·)}.

From Corollary 8.1.4 of Brualdi (2006), the extreme points of Y N(µ, ν) are contained in
ZN(µ, ν) = {f ∈ N|Θ|×|M | :

∑
θ f(θ, ·) = Nν(·),

∑
m f(·,m) = Nµ(·)}. Since Λ(µ, ν) =

{ f
N : f ∈ Y N(µ, ν)} and XN(µ, ν) = { f

N : f ∈ ZN(µ, ν)}, the extreme points of Λ(µ, ν) are
contained in XN(µ, ν).

Lemma 12. Let X,Y be metric spaces and Γ : X ⇒ Y be a correspondence. If Γ is upper
hemi-continuous at x0 ∈ X, and Γ(x0) = {y0} for some y0 ∈ Y , then Γ is continuous at x0.

Proof. For any ε > 0, let B(y0, ε) ⊆ Y denote the ε-ball centered at y0. We will show that
there exists δ > 0 such that for all |x − x0| < δ, Γ(x) ∩ B(y0, ε) '= ∅, which implies that Γ is
lhc and therefore continuous.

Now since Γ(x) = {y0} ⊆ B(y0, ε) and Γ is uhc at x0, it follows that there exists δ > 0

such that Γ(x) ⊆ B(y0, ε) for all |x−x0| < δ, so Γ(x)∩B(y0, ε) '= ∅ for all |x−x0| < δ, which
completes the proof.

Proof of Proposition 7 statement 1. First suppose (λ∗,σ∗) is not credible. Then there exists
λ′ ∈ Λ(µ0,λ∗M) (recall µ0 is the prior distribution on Θ) and ε0 > 0 such that

∑

θ,m

λ∗(θ,m)uS(θ,σ
∗(m)) <

∑

θ,m

λ′(θ,m)uS(θ,σ
∗(m))− ε0
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By continuity, there exists ε1 > 0 such that for all |λ− λ∗| < ε1 we have
∑

θ,m

λ(θ,m)uS(θ,σ
∗(m)) <

∑

θ,m

λ′(θ,m)uS(θ,σ
∗(m))− ε0/2 (22)

By Lemma 10, there exists ε2 > 0 such that for all |µ − µ0| < ε2 and |ν − λ∗M | < ε2, there
exists λ ∈ Λ(µ, ν) with

∑

θ,m

λ(θ,m)uS(θ,σ
∗(m)) >

∑

θ,m

λ′(θ,m)uS(θ,σ
∗(m))− ε0/2. (23)

Moreover, since the Receiver is choosing only pure strategies, there exists ε3 such that for
any σ where |σ − σ∗| < ε3, σ = σ∗.

Now let ε = min{ε1, ε2
|Θ|×|M | , ε3}, By assumption, there exists a finite-sample, credible and

R-IC profile (νN ,φN ,σN) such that |νN − λ∗M | < ε, |σN − σ| < ε and P (|φN(FN
Θ )− λ| < ε) >

1− ε.
Under such a finite-sample profile, σN = σ∗, and there exists FN

Θ ∈ FN
Θ , realized with

positive probability, such that λ̃∗ = φN(FN
Θ ) satisfies |λ̃∗ − λ∗| < min{ε1, ε2

|Θ|×|M |}.
Now since |λ̃∗ − λ∗| < ε1, by (22) we know that

∑

θ,m

λ̃∗(θ,m)uS(θ,σ
∗(m)) <

∑

θ,m

λ′(θ,m)uS(θ,σ
∗(m))− ε0/2 (24)

In addition, since |λ̃∗−λ∗| < ε2
|Θ|×|M | , we know FN

Θ = λ̃∗Θ satisfies |FN
Θ −µ0| < ε2, and νN = λ̃∗M

satisfies |νN − λ∗M | < ε2, so by (23) there exists λ̃′ ∈ Λ(FN
Θ , νN) such that

∑

θ,m

λ̃′(θ,m)uS(θ,σ
∗(m)) >

∑

θ,m

λ′(θ,m)uS(θ,σ
∗(m))− ε0/2 (25)

Combining (24) and (25), we have
∑

θ,m

λ̃′(θ,m)uS(θ,σ
∗(m)) >

∑

θ,m

λ̃∗(θ,m)uS(θ,σ
∗(m)),

Note that λ̃′ ∈ Λ(FN
Θ , νN), but by Lemma 11, we can replace λ̃′ with an extreme point in

XN(FN
Θ , νN), and the above inequality still holds. That is, there exists λ̂′ ∈ XN(FN

Θ , νN) such
that ∑

θ,m

λ̂′(θ,m)uS(θ,σ
∗(m)) >

∑

θ,m

λ̃∗(θ,m)uS(θ,σ
∗(m)),

Notice that λ̃∗ and λ̂′ are both in XN(FN
Θ , νN), which is a contradiction since by the credibility
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of (νN ,φN ,σN)

λ̃∗ = φN(FN
Θ ) = argmax

λ∈XN (FN
Θ ,νN )

∑

θ,m

λ(θ,m)uS(θ,σ
∗(m)).

Second, suppose (λ∗,σ∗) violates R-IC. Then there exists σ′ such that
∑

θ,m

λ∗(θ,m)uR(θ,σ
′(m)) >

∑

θ,m

λ∗(θ,m)uR(θ,σ
∗(m))

By continuity, there exist η > 0 and ε4 > 0 such that for all λ′ satisfying |λ∗ − λ′| < ε4, we
have ∑

θ,m

λ′(θ,m)uR(θ,σ
′(m))−

∑

θ,m

λ′(θ,m)uR(θ,σ
∗(m)) ≥ η > 0

Let d ≡ maxθ,a uR(θ, a) − minθ,a uR(θ, a) denote the gap between the Receiver’s highest
and lowest payoffs. Let ε5 ≤ η

d+η and ε = min{ε3, ε4, ε5}. By assumption, there exists a
credible and R-IC finite-sample profile (νN ,φN ,σN) such that Pr(|φN(FN

Θ )−λ∗| ≤ ε) > 1−ε,
and σN = σ∗. We will show that in the finite sample profile (νN ,φN ,σN), the Receiver can
profitably deviate from σN = σ∗ to σ′, which contradicts (νN ,φN ,σN) being R-IC.

By choosing σ∗ the Receiver obtains payoff
∑

FN
Θ ∈FN

Θ

PN(FN
Θ )
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))

By contrast, the Receiver obtains
∑

FN
Θ ∈FN

Θ

PN(FN
Θ )
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

from choosing σ′. Denote EN ≡ {FN
Θ : |φN(FN

Θ )− λ∗| ≤ δ} so Pr(EN) > 1− ε. By switching
from σ∗ to σ′, the Receiver obtains an extra payoff of

∑

FN
Θ ∈FN

Θ

PN(FN
Θ )

[
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))−
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

]

=
∑

FN
Θ ∈EN

PN(FN
Θ )

[
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))−
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

]

+
∑

FN
Θ /∈EN

PN(FN
Θ )

[
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))−
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

]

Note that
∑

θ,m φ
N(θ,m|FN

Θ )uR(θ,σ∗(m))−
∑

θ,m φ
N(θ,m|FN

Θ )uR(θ,σ′(m)) ≥ η for all FN
Θ ∈
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EN , while for all FN
Θ /∈ EN ,

∑
θ,m φ

N(θ,m|FN
Θ )uR(θ,σ∗(m))−

∑
θ,m φ

N(θ,m|FN
Θ )uR(θ,σ′(m)) ≥

−d. Together they imply,

∑

FN
Θ ∈FN

Θ

PN(FN
Θ )

[
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))−
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

]

≥ηPN(EN)− d(1− PN(EN)).

Since PN(EN) > 1− ε, we have

∑

FN
Θ ∈FN

Θ

PN(FN
Θ )

[
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

∗(m))−
∑

θ,m

φN(θ,m|FN
Θ )uR(θ,σ

′(m))

]

>(1− ε)η − εd = η − ε(η + d) ≥ 0

This contradicts the R-IC of (νN ,φN ,σN).

Proof of Proposition 7 statement 2. For each N ≥ 1, define σN = σ∗, νN ∈ argminν∈FN
M
|λ∗M−

ν|, and φN : FN
Θ → ∪FN

Θ ∈FN
Θ
X(FN

Θ , νN) by

φ(FN
Θ ) ∈ argmax

λ∈XN (FN
Θ ,νN )

∑

θ,m

λ(θ,m)uS(θ,σ
∗(m)).

By construction, for every N , (νN ,φN ,σN) is credible and |σN − σ∗| = 0. It remains to show
that for every ε > 0, there exists large enough N , such that

1. |νN − λ∗M | < ε;

2. P (|φN(FN
Θ )− λ∗| < ε) > 1− ε;

3. (νN ,φN ,σN) is R-IC.

From the denseness of rational numbers, we know that νN → λ∗M as N → ∞ so the first
statement follows.

To prove the second statement, note that since (λ∗,σ∗) is strictly credible, λ∗ is the unique
maximizer to

max
λ∈Λ(µ,ν)

∑

θ,m

λ(θ,m)uS(θ,σ
∗(m)).

From Lemma 10, the best response correspondence B(µ, ν) ≡ argmaxλ∈Λ(µ,ν)
∑

θ,m λ(θ,m)uS(θi,σ∗(mj))

is upper hemi-continuous. Since B(µ, ν) = {λ∗} is a singleton, from Lemma 12, B is contin-
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uous at (µ, ν). Therefore, there exists δ > 0, so that for any (µ′, ν ′) such |µ − µ′| < δ and
|ν − ν ′| < δ, we have |λ′ − λ∗| < ε for every λ′ ∈ B(µ′, ν ′).

From the Glivenko–Cantelli theorem, for large N , P (|FN
Θ − µ0| < δ) > 1 − ε. Pick

N large enough so that P (|FN
Θ − µ0| < δ) > 1 − ε and |νN − µ∗

M | < δ. Follows from
the definition of φ and Lemma 11, φ(FN

Θ ) ∈ argmaxλ∈XN (FN
Θ ,νN )

∑
θ,m λ(θ,m)uS(θ,σ∗(m)) ⊂

argmaxλ∈Λ(FN
Θ ,νN )

∑
θ,m λ(θ,m)uS(θ,σ∗(m). So with at least 1−ε probability, |φ(FN

Θ )−λ∗| <
ε.

Lastly, we show that (νN ,φN ,σN) is R-IC for large N . Since (λ∗,σ∗) is strictly R-IC, for
any σ '= σ∗, ∑

θ,m

λ∗(θ,m)uR(θ,σ
∗(m)) >

∑

θ,m

λ∗(θ,m)uR(θ,σ(m)).

From continuity, there exists η > 0 such that for any λ such that |λ∗ − λ| < ε,
∑

θ,m

λ(θ,m)uR(θ,σ
∗(m))−

∑

θ,m

λ(θ,m)uR(θ,σ(m)) ≥ η > 0.

As we have shown, for any ε > 0, for large enough N , Pr(|φ(FN
Θ ) − λ∗| ≤ ε) ≥ 1 − ε. Pick

ε ≤ η
d+η , then follow from the same argument above, we have

∑

FN
Θ ∈FN

Θ

PN(FN
Θ )
∑

θ,m

φ(θ,m|FN
Θ )uR(θ,σ

∗(m)) >
∑

FN
Θ ∈FN

Θ

PN(FN
Θ )
∑

θ,m

φ(θ,m|FN
Θ )uR(θ,σ(m))

for any σ '= σ∗. So (νN ,φN ,σN) is R-IC.

B.3 Cycle Length in Theorem 1
The following claim formalizes the observation made after Theorem 1: when verifying uS-
cyclical monotonicity, it is without loss to focus on cycles no longer than min{|Θ|, |A|}.

Claim. An outcome distribution π is uS-cyclically monotone if and only if for each sequence
(θ1, a1), . . . , (θn, an) ∈ supp(π) where n ≤ min{|Θ|, |A|} and an+1 ≡ a1, we have

n∑

i=1

uS(θi, ai) ≥
n∑

i=1

uS(θi, ai+1).

Proof. We will prove that if there exists a sequence (θ1, a1), ..., (θn, an) ∈ supp(π) with n >

min{|Θ|, |A|} such that

uS(θ1, a1) + ...+ uS(θn, an) < uS(θ1, a2) + ...+ uS(θn, a1),
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then there exists a sequence (θ′1, a
′
1), ..., (θ

′
k, a

′
k) ∈ supp(π) with k < n such that

uS(θ
′
1, a

′
1) + ...+ uS(θ

′
k, a

′
k) < uS(θ

′
1, a

′
2) + ...+ uS(θ

′
k, a

′
1).

The statement of the claim then follows from iteration.
Suppose by contradiction that there exists a sequence (θ1, a1), ..., (θn, an) with n > min{|Θ|, |A|}

such that
uS(θ1, a1) + ...+ uS(θn, an) < uS(θ1, a2) + ...+ uS(θn, a1),

and that for all sequences with length k < n,

uS(θ
′
1, a

′
1) + ...+ uS(θ

′
k, a

′
k) ≥ uS(θ

′
1, a

′
2) + ...+ uS(θ

′
k, a

′
1). (26)

Suppose min{|Θ|, |A|} = |A| (a similar argument works for min{|Θ|, |A|} = |Θ|), then there
exists a∗ that appears twice in the sequence (θ1, a1), ..., (θn, an). Without loss let a1 = al = a∗

with 1 < l ≤ n. Then

uS(θ1, a1) + ...+ uS(θn, an) = [uS(θ1, a1) + ...+ uS(θl−1, al−1)] + [uS(θl, al) + ...+ uS(θn, an)]

≥ [uS(θ1, a2) + ...+ uS(θl−1, a1)] + [uS(θl, al+1) + ...+ uS(θn, al)]

= [uS(θ1, a2) + ...+ uS(θl−1, al)] + [uS(θl, al+1) + ...+ uS(θn, a1)]

where the inequality follows from (26), and the second equality holds because al = a1. This
is a contradiction.

B.4 The Benefit of Credible Persuasion: An Intermediate Example
In this section, we provide an example in which the Sender can benefit from credible persua-
sion, but cannot achieve her optimal full-commitment payoff. This example also corresponds
to the first case of Proposition 3.

The prior belief is µ0 with µ0(θH) = 0.4. Note that both the Sender’s and the Receiver’s
payoffs are supermodular. The horizontal axis µ in the graph represents the probability
assigned to θH by the posterior belief.

According to the concavification, the optimal full-commitment information structure λ∗

induces two posterior beliefs µ = 1/3 and µ = 2/3, with the Receiver’s strategy σ∗ playing a2

when µ = 1/3 and a3 when µ = 2/3. However in this case the support of the outcome distri-
bution is {(θL, a2), (θL, a3), (θH , a2), (θH , a3)}. This outcome distribution is not comonotone,
so (λ∗,σ∗) is not credible.

The optimal credible information structure λ◦ is represented by the green dashed line:
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it induces two posteriors, µ = 1/3 and µ = 1, with the Receiver strategy σ◦ playing a2

when µ = 1/3 and a3 when µ = 1. In particular, the support of the outcome distribution is
{(θL, a2), (θH , a2), (θH , a3)} which is comonotone, so (λ◦,σ◦) is credible.

uS a1 a2 a3
θ = H -1 0.5 0.8
θ = L 0 0.75 0.8

uR a1 a2 a3
θ = H 0 2 3
θ = L 3 2 0

µ0

v(µ)

1µ0 = 0.4

a1 a2 a3

Sender and Receiver’s payoffs Concavification

B.5 Comparative Statics: Examples
B.5.1 A Class of Aligned Preferences

Let uS(θ, a) be a strictly supermodular payoff function; in addition, assume that uS favors
higher actions: uS(θ, a′) ≥ uS(θ, a) for all θ and a′ ≥ a. Let {uκ

R}κ∈K denote a collection of
Receiver’s payoff functions defined by uκ

R(θ, a) ≡ w(θ, a,κ), where w : Θ × A ×K → R is a
strictly supermodular function, and K ⊆ R represents a parameter space.

It’s straightforward to see that for each κ ∈ K, the Receiver payoff function uκ
R : Θ ×

A → R is strictly supermodular. Furthermore, preferences (uS, uκ′
R ) are more aligned than

(uS, uκ
R) whenever κ′ ≥ κ. To see why, for each κ ∈ K and µ ∈ ∆(Θ), let âκ(µ) ≡

max{argmaxa∈A
∑

θ µ(θ)u
κ
R(θ, a)} denote the Receiver’s highest best response to µ when the

payoff function is uκ
R (note that since the Sender favors higher actions, selecting the highest

best response is equivalent to breaking ties in the Sender’s favor). By Lemma 2.8.1 of Topkis
(2011), âκ

′
(µ) ≥ âκ(µ) for κ′ ≥ κ. Since the Sender favors higher actions, for any a ∈ A,

µ ∈ ∆(Θ), and κ′ ≥ κ, we have

Eµ

[
uS(θ, â

κ(µ))
]
≥ Eµ

[
uS(θ, a)

]
⇒ Eµ

[
uS(θ, â

κ′
(µ))

]
≥ Eµ

[
uS(θ, a)

]
.

11



This implies that (uS, uκ′
R ) are more aligned than (uS, uκ

R) whenever κ′ ≥ κ. So according
to Proposition 5, the Sender obtains a higher payoff from the Sender-optimal stable outcome
distribution under (uS, uκ′

R ) than from that under (uS, uκ
R).27

B.5.2 Set of Stable Outcome Distributions

The following example illustrates that even in a binary-state, binary-action setting, more
aligned preferences do not necessarily lead to a larger set of stable outcomes.

Suppose the state space is Θ = {0, 1} with equal prior probabilities, and the action space
is A = {0, 1}. Players’ payoffs are given by

uS a = 0 a = 1
θ = 0 0 1
θ = 1 0 2

uR a = 0 a = 1
θ = 0 0 -1
θ = 1 0 k

where the parameter k ∈ (0,∞) captures the alignment between the players preferences. A
higher k implies players’ preferences are more aligned under the alignment notion in Kamenica
and Gentzkow (2011).

We will characterize the set of stable outcome distributions; that is, π ∈ ∆(Θ×A) satisfying
πΘ = µ0, uR-obedience, and uS-cyclical monotonicity (comonotonicity in this case due to the
supermodularity of Sender’s payoff).

Since states and actions are binary, an outcome distribution can be represented by a
vector in [0, 1]2. This is because specifying π(a = 1|θ = 1) and π(a = 1|θ = 0) pins down
π(a = 0|θ = 1) = 1− π(a = 1|θ = 1) and π(a = 0|θ = 0) = 1− π(a = 1|θ = 0).

The obedient constraint for action a = 1 is

π(a = 1|θ = 1)uR(θ = 1, a = 1) + π(a = 1|θ = 0)uR(θ = 0, a = 1) ≥

π(a = 1|θ = 1)uR(θ = 1, a = 0) + π(a = 1|θ = 0)uR(θ = 0, a = 0)

By defining vectors π =
(
π(a = 1|θ = 1),π(a = 1|θ = 0)

)
, u1 =

(
uR(θ = 1, a = 1), uR(θ =

0, a = 1)
)

and u0 =
(
uR(θ = 1, a = 0), uR(θ = 0, a = 0)

)
, the constraint can be re-written in

vector form:

π · (u1 − u0) = π ·
(

k

−1

)
≥ 0. (OB-1)

27 Note also that the following variant of the alignment notion in Gentzkow and Kamenica (2017) is a further
special case of this class of preferences: uS(θ, a) = f(θ, a), uκ

R(θ, a) = f(θ, a)+κg(θ, a) with κ ∈ [0,∞), where
both f and g are strictly supermodular and f(θ, a′) ≥ f(θ, a) for all θ and a′ ≥ a.
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Similarly, the obedient constraint for action a = 0 is:

(1− π) · (u1 − u0) = (1− π) ·
(

k

−1

)
≤ 0. (OB-0)

The credibility (comonotonicity) constraint is

π(a = 1|θ = 0) > 0 ⇒ π(a = 1|θ = 1) = 1 (CO)

To visualize how these constraints vary with k, let us represent them in a two-dimensional
figure. In Fig. 4, notice that for any k, the hyperplane defined by (OB-1) always crosses (0, 0),
and the hyperplane defined by (OB-0) always crosses (1, 1). These two parallel hyperplanes
both have normal vector (k,−1), and rotate at (0, 0) and (1, 1) respectively as k varies.

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)

OB-1: π · (u1 − u0) ≥ 0

OB-0: (1− π) · (u1 − u0) ≤ 0

(1, 1)

u1 − u0 = (k,−1)

(1, 1)

k↑

k↑

Figure 4: Hyperplanes defined by OB-1 and OB-0

When k < 1, the two obedience constraints are represented in the pink areas in the left
panel of Fig. 5. In this scenario, (OB-1) is the binding obedience constraint. By contrast,
when k > 1, the binding obedience constraint is (OB-0), as shown in the right panel of
Fig. 5. The comonotonicity constraint, which requires that π(a = 1|θ = 1) = 1 whenever
π(a = 1|θ = 0) > 0, is represented by the blue line segments in both cases.

The set of stable outcome distributions is thus the intersection of the pink and blue areas,
which is represented by the purple line segments in Fig. 6. When k < 1, the set of stable
outcome distributions is {(x, 0)|x ∈ [0, 1]}∪{(1, x)|x ∈ [0, k]}, which expands when k increases.
By contrast, after the hyperplane defined by OB-1 crosses the 45 degree line, i.e., when k > 1,
the binding obedience constraint becomes OB-0, which starts to rotate at (1,1). So the set
of stable outcome distributions, {(x, 0)|x ∈ [1 − 1

k , 1]} ∪ {(1, x)|x ∈ [0, 1]}, shrinks when k

13



π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)

OB-1

OB-0

(1, 1)

u1 − u0

(1, 1)

(CO)

(OB-1&0)

k < 1

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)

OB-1

OB-0

(1, 1)

u1 − u0

(1, 1)

(CO)

(OB-1&0)

k > 1

Figure 5: Stable outcome distributions

increases.

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)

k increases

(1, 1)

k increases

(CO)∩(OBs)

(CO)

(OB-1&0)

(1, k)

k < 1

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)
(1, 1)

k increases

(CO)∩(OBs)

(CO)

(OB-1&0)
(1− 1

k , 0)

k > 1

Figure 6: How the set of stable outcome distributions varies with k.

A final remark is that, even though the set of stable outcome distributions changes non-
monotonically as k increases, according to Proposition 5, the Sender’s optimal payoff is always
(weakly) increasing. This can be seen in Fig. 7. Let uS =

(
uS(θ = 1, a = 1), uS(θ = 0, a =

1)
)
= (2, 1). The Sender’s objective is to maximize π · uS among the set of π represented

by the purple line segment. The vector uS points in the northeast direction, so the value is
maximized at the northeast corner of the purple line segment.

When k < 1, increasing k expands the stable outcome distributions and the Sender’s
optimal stable outcome distribution π∗ = (1, k) changes accordingly, which strictly increases
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the Sender’s value. When k > 1, increasing k shrinks the stable outcome distributions but
the optimal outcome distribution, π∗ = (1, 1) remains feasible, and thus the Sender’s value is
unchanged.

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)
(1, 1)

k increases us

π∗

k < 1

π(a = 1|θ = 1)(0, 0)

π(a = 1|θ = 0)
(1, 1) us

π∗

k increases

k > 1

Figure 7: How the optimal stable outcome distribution varies with k.

B.6 Extension to Infinite Spaces
Suppose Θ and A are compact Polish spaces, and let M be a Polish space containing A. An
information structure λ ∈ ∆(Θ ×M) is a Borel probability measure on Θ ×M . A strategy
σ : M → A is a measurable function from M to A.

An outcome distribution is a Borel measure π ∈ ∆(Θ×A). The outcome distribution π is
induced by the profile (λ,σ) if π is the pushforward measure of λ obtained from the function
ρ : (θ,m) → (θ,σ(m)). That is, for any S ∈ B(Θ× A), π(S) = λ(ρ−1(S)).

Definition 1∗. A profile (λ,σ) is credible if

λ ∈ argmax
λ′∈D(λ)

∫
uS(θ,σ(m)) dλ′,

where D(λ) = {λ′ ∈ ∆(Θ×M) | λ′Θ = µ0,λ′M = λM}.

Definition 2∗. A profile (λ,σ) is R-IC if for any Receiver’s strategy σ′, we have
∫

uR(θ,σ(m)) dλ ≥
∫

uR(θ,σ
′(m)) dλ.
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Definition 3∗. An outcome distribution is stable if it can be induced by a profile that is both
credible and R-IC.

B.6.1 Extension of Theorem 1

Let {π(·|a)}a∈A ⊆ ∆(Θ) denote a system of regular conditional probabilities obtained from
disintegrating π with πA (see, for example, Chang and Pollard, 1997). The following result is
an extension of Theorem 1.

Theorem 1∗. An outcome distribution π ∈ ∆(Θ × A) is stable if and only if there exists a
Borel set E◦ ⊆ Θ× A with π(E◦) = 1 such that

1. π is uS-cyclically monotone on E◦: for any sequence (θ1, a1) , . . . , (θn, an) ∈ E◦ and
an+1 ≡ a1,

n∑

i=1

uS

(
θi, ai

)
≥

n∑

i=1

uS

(
θi, ai+1

)
.

2. π is uR-obedient on E◦: for each a ∈ A◦ ≡ projA(E◦), let E◦
a ≡ {θ : (θ, a) ∈ E◦}, then

∫

E◦
a

uR(θ, a) dπ(θ|a) ≥
∫

E◦
a

uR(θ, a
′) dπ(θ|a)

for all a ∈ A◦ and all a′ ∈ A.

Proof. The “only if” direction: Suppose that π is induced by a credible and R-IC profile (λ,σ).
The profile (λ,σ) being credible implies

λ ∈ argmax
λ′∈D(λ)

∫
uS (θ,σ(θ,m)) dλ′(θ,m)

Let ũ(θ,m) ≡ uS (θ,σ(m)). Since ũ(θ,m) is Borel measurable and |ũ(θ,m)| < ∞, by Beiglböck
et al. (2009), λ is ũ-cyclically monotone: i.e. there exists a Borel set F ⊆ Θ ×M such that
λ(F ) = 1 and for every sequence (θ1,m1), ..., (θn,mn) ∈ F ,

n∑

i=1

uS (θi,σ (mi)) ≥
n∑

i=1

uS (θi,σ (mi+1)) .

Consider the function ρ : (θ,m) → (θ,σ(m)), and define E ≡ ρ(F ). Since λ(F ) = 1 and π
is the pushforward measure of λ obtained from ρ, it follows that π(E) = 1. In addition, for
any sequence (θ1, a1) , . . . , (θn, an) ∈ E, there exists sequence (θ1,m1), . . . , (θn,mn) ∈ F such
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that ai = σ(mi). So

n∑

i=1

uS(θi, ai) =
n∑

i=1

uS (θi,σ (mi)) ≥
n∑

i=1

uS (θi,σ (mi+1)) =
n∑

i=1

uS(θi, ai+1),

which implies that π is uS-cyclically monotone on the set E.
Now for each a ∈ A, let Ea ≡ {θ : (θ, a) ∈ E}. Note that π(Ea|a) = 1 for πA-almost

all a ∈ A, since otherwise there exists Ã ⊆ A with πA(Ã) > 0, such that for all a ∈ Ã,
π(Ea|a) < 1. This would then imply

π(Θ× Ã) = π(E ∩ (Θ× Ã))

=

∫

A

[∫

Θ

1E × 1Θ×Ã dπ(θ|a)
]
dπA(a)

<

∫

Ã

1 dπA(a)

= π(Θ× Ã),

which is a contradiction. So π(Ea|a) = 1 for πA-almost all a ∈ A. As a result, for all
measurable functions φ : Θ → R and all a ∈ A, we have

∫

Θ

g dπ(θ|a) =
∫

Ea

g dπ(θ|a).

Next we establish that for πA-almost all a ∈ A,
∫

Ea

uR(θ, a) dπ(θ|a) ≥
∫

Ea

uR(θ, a
′) dπ(θ|a) (27)

for all a′ ∈ A. We prove this by proving its contraposition: suppose this is not true, we will
show that this implies (λ,σ) is not R-IC. Specifically, if (27) does not hold for πA-almost all
a ∈ A and all a′ ∈ A, then there exists Â ∈ B(A) with πA(Â) > 0, and for each a ∈ Â, we can
find d(a) ∈ A that satisfies

∫

Ea

uR(θ, d(a)) dπ(θ|a) >
∫

Ea

uR(θ, a) dπ(θ|a).

Since uR(θ, a) is a bounded Carathéodory function, the function

g(a, a′) ≡
∫

Ea

uR(θ, a
′) dπ(θ|a)

is measurable in a and continuous in a′, and therefore also Carathéodory. For each a ∈ Â, let
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φ(a) ≡ argmaxa′∈A g(a, a′) denote the maximizers of the Receiver’s interim expected payoff.
Since A is compact, by the Measurable Maximum Theorem (see, for example, Theorem 18.19
in Aliprantis and Border, 2006), the correspondence φ(a) admits a measurable selection d∗ :

Â → A, such that for all a ∈ Â,
∫

Ea

uR(θ, d
∗(a)) dπ(θ|a) ≥

∫

Ea

uR(θ, d(a)) dπ(θ|a) >
∫

Ea

uR(θ, a) dπ(θ|a).

Now define f ∗ = f for a ∈ Â and f ∗ = I for a /∈ Â. Clearly f ∗ : A → A is measurable. In
addition, ∫

Ea

uR(θ, f
∗(a)) dπ(θ|a) >

∫

Ea

uR(θ, a) dπ(θ|a).

for all a ∈ Â. Since πA(Â) > 0, we have that
∫

Θ×A

uR(θ, f
∗(a)) dπ(θ, a) =

∫

A

[∫

Θ

uR(θ, f
∗(a)) dπ(θ|a)

]
dπA(a)

=

∫

A

[∫

Ea

uR(θ, f
∗(a)) dπ(θ|a)

]
dπA(a)

>

∫

A

[∫

Ea

uR(θ, a) dπ(θ|a)
]
dπA(a)

=

∫

A

[∫

Θ

uR(θ, a) dπ(θ|a)
]
dπA(a)

=

∫

Θ×A

uR(θ, a) dπ(θ, a),

(28)

Now since π is the pushforward measure of λ, we have
∫

Θ×A

uR(θ, a)dπ(θ, a) =

∫

Θ×M

uR(θ,σ(m))dλ(θ,m). (29)

In addition, let σ′ ≡ f ∗ ◦ σ, then σ′ : M → R is a Borel measurable function on M , and
∫

Θ×A

uR(θ, f
∗(a)) dπ(θ, a) =

∫

Θ×M

uR(θ, f
∗ ◦ σ(m)) dλ(θ,m)

=

∫

Θ×M

uR(θ,σ
′(m))dλ(θ,m).

(30)

Plugging (29) and (30) into (28), we have
∫

Θ×M

uR(θ,σ
′(m))dλ(θ,m) >

∫

Θ×A

uR(θ,σ(m)) dλ(θ,m),
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which is a contradiction to (λ,σ) being R-IC. So there exists A ⊆ A with πA(A) = 1, such
that ∫

Ea

uR(θ, a) dπ(θ|a) ≥
∫

Ea

uR(θ, a
′) dπ(θ|a)

for all a ∈ A and all a′ ∈ A.
Define E◦ ≡ E ∩ (Θ×A). Note that π(E◦) = 1, and π is uR-obedient on E◦. In addition,

since π is uS-cyclically monotone on E and E◦ ⊂ E, we have that π is uS-cyclically monotone
on E◦. This completes the proof of the “only if” direction.

The “if” direction: Suppose there exists a Borel set E◦ ⊆ Θ × A with π(E◦) = 1, where
the outcome distribution π ∈ ∆(Θ × A) is both uS-cyclical monotone and uR-obedient. Let
the message space M = A, and consider the profile (λ,σ) where λ ≡ π and σ is the identity
mapping. Clearly, (λ,σ) induces π. We will show that (λ,σ) is both credible and R-IC.

To see that (λ,σ) is R-IC, first note that following a similar argument as the one in the
“only if” direction, we have ∫

Θ

g dπ(θ|a) =
∫

E◦
a

g dπ(θ|a).

for all measurable functions φ : Θ → R and πA-almost all a ∈ A. So for all σ′ : A → A,
∫

Θ×A

uR(θ, a)dπ(θ, a) =

∫

A

∫

Θ

uR(θ, a) dπ(θ|a) dπA(a)

=

∫

A

∫

E◦
a

uR(θ, a) dπ(θ|a) dπA(a)

≥
∫

A

∫

E◦
a

uR(θ,σ
′(a)) dπ(θ|a) dπA(a)

=

∫

Θ×A

uR(θ,σ
′(a))dπ(θ, a),

which implies that (λ,σ) is R-IC.
Next we show (λ,σ) is credible. Since π is uS−cyclically monotone on E◦, every sequence

(θ1, a1), . . . , (θn, an) ∈ E◦ satisfies

n∑

i=1

uS(θi, ai) ≥
n∑

i=1

uS(θi, ai+1),

where an+1 ≡ a1. Since λ = π and σ is the identity mapping, this is equivalent to the existence
of a set F ⊆ Θ×M with λ(F ) = 1, such that

n∑

i=1

uS(θi,σ(mi)) ≥
n∑

i=1

uS(θi,σ(mi+1));
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for every sequence (θ1,m1), . . . , (θn,mn) ∈ F with mn+1 = m1. By Beiglböck et al. (2009), λ
satisfies

λ ∈ argmax
λ′∈D(λ)

∫

Θ×M

uS(θ,σ(m)) dλ′

which means (λ,σ) is credible.

B.6.2 Extension of Proposition 2

Next, we extend Proposition 2 to infinite spaces. Let A, Θ, and M be compact subsets of R,
and A ⊆ M .

Definition 4. An outcome distribution π ∈ ∆(Θ × A) is a no-information outcome if there
exists â ∈ A such that π(Θ× {â}) = 1.

For each pair of actions a, a′ ∈ A, let Θ0(a, a′) ≡ {θ : uR(θ, a) = uR(θ, a′)} denote the set
of states under which the Receiver is indifferent between a and a′.

Proposition 2∗. Suppose µ0(Θ0(a, a′)) < 1 for all distinct a, a′ ∈ A. In addition, suppose
uS : Θ×A → R is strictly supermodular and uR : Θ×A → R is submodular, then any stable
outcome distribution must be a no-information outcome.

Proof. Let π be a stable outcome distribution. By Theorem 1 and Lemma 1, there exists a
Borel set E◦ ⊆ Θ× A with π(E◦) = 1, such that

1. π is comonotone on E◦: for all (θ, a), (θ′, a′) ∈ E, a < a′ implies θ ≤ θ′; and

2. π is uR-obedient on E◦: for each a ∈ A◦ ≡ projA(E◦), let Ia ≡ {θ : (θ, a) ∈ E◦}, then
∫

Ia

uR(θ, a) dπ(θ|a) ≥
∫

Ia

uR(θ, a
′) dπ(θ|a)

for all a ∈ A◦ and a′ ∈ A.

From uR-obedience, we know that for all a, a′ ∈ A◦ with a < a′, we have
∫

Ia

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a) ≥ 0 ≥

∫

Ia′

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a′). (31)

In addition, comonotonicity implies that θ ≤ θ′ for all θ ∈ Ia, θ′ ∈ Ia′ . Since uR is submodular,
we have uR(θ, a)− uR(θ, a′) ≤ uR(θ′, a)− uR(θ′, a′) for all θ ∈ Ia and θ′ ∈ Ia′ , which implies

sup
θ∈Ia

{uR(θ, a)− uR(θ, a
′)} ≤ inf

θ′∈Ia′
{uR(θ

′, a)− uR(θ
′, a′)},
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and therefore
∫

Ia

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a) ≤

∫

Ia

sup
θ∈Ia

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a)

= sup
θ∈Ia

{uR(θ, a)− uR(θ, a
′)}

≤ inf
θ′∈Ia′

{uR(θ
′, a)− uR(θ

′, a′)}

≤
∫

Ia′

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a′).

(32)

Combining (31) and (32), we have for all a, a′ ∈ A◦, a < a′,
∫

Ia

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a) = sup

θ∈Ia
{uR(θ, a)− uR(θ, a

′)} = 0

and ∫

Ia′

[uR(θ, a)− uR(θ, a
′)] dπ(θ|a′) = inf

θ′∈Ia′
{uR(θ

′, a)− uR(θ
′, a′)} = 0.

This implies that for all a, a′ ∈ A◦, a < a′, we have

uR(θ, a)− uR(θ, a
′) ≤ 0 for all θ ∈ Ia,

with uR(θ, a) = uR(θ, a
′) for π(.|a)-almost all θ ∈ Ia;

(33)

and

uR(θ
′, a)− uR(θ

′, a′) ≥ 0 for all θ′ ∈ Ia′ ,

with uR(θ
′, a) = uR(θ

′, a′) for π(.|a′)-almost all θ′ ∈ Ia′ ,
(34)

For each a ∈ A◦, let N(a) ≡ {θ ∈ Ia : uR(θ, a) '= uR(θ, a′) for some a′ ∈ A◦} denote the
set of states in Ia under which the Receiver is not indifferent towards all actions in A◦. We
want to show that π(N(a)|a) = 0 for each a ∈ A◦. Note that this does not follow directly from
(33) and(34) since A◦ may be uncountably infinite, and an uncountable union of π(.|a)-null
sets may no longer be a π(.|a)-null set.

However, note that since uR is submodular, for any a′ > a, if uR(θ, a)−uR(θ, a′) < 0, then
uR(θ′, a) − uR(θ′, a′) < 0 for all θ′ < θ. Similarly, for any a′ < a, if uR(θ, a′) − uR(θ, a) > 0,
then uR(θ′, a′)− uR(θ′, a) > 0 for all θ′ > θ. This means that N(a) is the union of nested sets
that are located at either the lower or upper ends of Ia. We will exploit this structure to show
π(N(a)|a) = 0.
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For each a′ ∈ A◦, a′ > a, let us define

N̂(a′|a) ≡
{
θ ∈ Ia : uR(θ, a)− uR(θ, a

′) < 0
}
,

and
θ̂(a′|a) ≡ sup

{
θ ∈ Ia : uR(θ, a)− uR(θ, a

′) < 0
}
.

It follows that
(
−∞, θ̂(a′|a)

)
∩ Ia ⊆ N̂(a′|a) ⊆

(
−∞, θ̂(a′|a)

]
∩ Ia (35)

and π(N̂(a′|a)|a) = 0.
Analogous, for each a′ ∈ A◦, a′ < a, define

Ñ(a′|a) ≡
{
θ ∈ Ia : uR(θ, a

′)− uR(θ, a) > 0
}
,

and
θ̃(a′|a) ≡ inf

{
θ ∈ Ia : uR(θ, a

′)− uR(θ, a) > 0
}
,

then
(
θ̃(a′|a), ∞

)
∩ Ia ⊆ Ñ(a′|a) ⊆

[
θ̃(a′|a), ∞

)
∩ Ia (36)

and π(Ñ(a′|a)|a) = 0.
Let N̂(a) ≡ ∪a′∈A◦,a′>aN̂(a′|a) and Ñ(a) ≡ ∪a′∈A◦,a′<aÑ(a′|a), then we have N(a) =

N̂(a) ∪ Ñ(a). In order to show π(N(a)|a) = 0, it suffices to show both π(N̂(a)|a) = 0 and
π(Ñ(a)|a) = 0. Below we will show π(N̂(a)|a) = 0. The fact that π(Ñ(a)|a) = 0 follows from
similar arguments.

Let θ̂(a) ≡ supa′∈A◦,a′>a θ̂(a
′|a). By (35) and the definition of N̂(a), we have

(−∞, θ̂(a)) ∩ Ia ⊆ N̂(a) ⊆ (−∞, θ̂(a)] ∩ Ia.

However, note that if θ̂(a) ∈ N̂(a), then θ̂(a) ∈ N̂(a′|a) for some a′ ∈ A◦ with a′ > a, and this
would imply π({θ̂(a)} | a) = 0 since π(N̂(a′|a) | a) = 0 for all a′ ∈ A◦ with a′ > a. Therefore,
in order to prove π(N̂(a) | a) = 0, it suffices to prove that π

(
(−∞, θ̂(a)) ∩ Ia | a

)
= 0.

To this end, note that (−∞, θ̂(a)) = ∪∞
n=1(−∞, θ̂(a)−1/n). Since θ̂(a) ≡ supa′∈A◦,a′>a θ̂(a

′|a),
for each n ≥ 1, (−∞, θ̂(a) − 1/n) ⊆ (−∞, θ̂(a′|a)) for some a′ ∈ A◦ with a′ > a. So for each
n ≥ 1,

π
(
(−∞, θ̂(a)− 1/n) ∩ Ia | a

)
≤ π

(
(−∞, θ̂(a′|a)) ∩ Ia | a

)
≤ π

(
N(a′|a) | a

)
= 0.
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As a result, we have

π
(
(−∞, θ̂(a)) ∩ Ia | a

)
= π

(
∪∞

n=1

(
(−∞, θ̂(a)− 1/n) ∩ Ia

) ∣∣∣ a
)

≤
∞∑

n=1

π
(
(−∞, θ̂(a)− 1/n) ∩ Ia

∣∣∣ a
)
= 0,

so π(N̂(a) | a) = 0.
Using similar arguments as above, we can establish that π(Ñ(a) | a) = 0 as well, so

π(N(a)|a) = π( N̂(a) ∪ Ñ(a) | a) = 0. For each a ∈ A◦, let

Θ̂0(a) ≡
{
θ ∈ Ia : uR(θ, a) = uR(θ, a

′) for all a′ ∈ A◦} = [N(a)]c,

so π( Θ̂0(a) | a) = 1− π(N(a)|a) = 1.
Let Θ̂0 ≡ {θ ∈ Θ : uR(θ, a) = uR(θ, a′) for all a, a′ ∈ A◦}. We have

µ0(Θ̂0) = π(Θ̂0 × A) = π( (Θ̂0 × A) ∩ E ),

so

µ0(Θ̂0) =

∫

Θ×A

1Θ̂0×A · 1E dπ(θ, a)

=

∫

A

[∫

Θ

1Θ̂0×A · 1E dπ(θ|a)
]
dπA(a)

=

∫

A

[∫

Ia

1Θ̂0×A dπ(θ|a)
]
dπA(a)

=

∫

A

π( Θ̂0(a)| a ) dπA(a)

=

∫

A

1 dπA(a) = 1.

Recall that Θ0(a, a′) ≡ {θ ∈ Θ : uR(θ, a) = uR(θ, a′)} and by our assumption µ0(Θ0(a, a′)) < 1

for all distinct a, a′ ∈ A. Since Θ̂0 ≡ {θ ∈ Θ : uR(θ, a) = uR(θ, a′) for all a, a′ ∈ A◦} and we
have established that µ0(Θ̂0) = 1, A◦ must be a singleton set. Since π(Θ× A◦) ≥ π(E◦) = 1,
it follows that π is a no-information outcome.

B.7 Credible Persuasion in Games
In this section, we generalize the framework in Section 2.1 to a setting with multiple Receivers,
where the Sender can also take actions after information is disclosed. We also allow the state
space and action space to be infinite.
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Consider an environment with a single Sender (she) and r Receivers (each of whom is a
he). The Sender has action set AS while each Receiver i ∈ {1, . . . , r} has action set Ai. Let
A = AS × A1 × . . . × Ar denote the set of action profiles. Each player has payoff function
ui : Θ × A → R, i = S, 1, . . . , r, respectively. The state space Θ and action spaces Ai are
Polish spaces endowed with their respective Borel sigma-algebras. Players hold full-support
common prior µ0 ∈ ∆(Θ). We refer to G = (Θ, µ0, AS, uS, {Ai}ri=1, {ui}ri=1) as the base game.

Let M be a Polish space that contains A. The Sender chooses an information structure λ ∈
∆(Θ×M) where λΘ = µ0: note that this formulation implies that the information structure
generates public messages observed by all Receivers. Together the information structure and
the base game constitute a Bayesian game G = 〈G,λ〉, where:28

1. At the beginning of the game a state-message pair (θ,m) is drawn from the information
structure λ;

2. The Sender observes (θ,m) while the Receivers observe only m; and

3. All players choose an action simultaneously.
A strategy profile σ : Θ × M → A in G consists of a Sender’s strategy σS : Θ × M → AS

and Receivers’ strategies σi : M → Ai, i = 1, . . . , r. For each profile of Sender’s information
structure and players’ strategies (λ,σ), players’ expected payoffs are given by

Ui(λ,σ) =

∫

Θ×M

ui(θ,σ(θ,m)) dλ(θ,m) for i = S, 1, . . . , r.

We now generalize the notion of credibility and incentive compatibility in Section 2 to the
current setting. For each λ, let D(λ) ≡

{
λ′ ∈ ∆(Θ×M) : λ′Θ = µ0,λ′M = λM

}
denote the set

of information structures that induce the same distribution of messages as λ. Definition 5 is
analogous to Definition 1, which requires that given the players’ strategy profile, no deviation
in D(λ) can be profitable for the Sender.

Definition 5. A profile (λ,σ) is credible if

λ ∈ argmax
λ′∈D(λ)

∫
uS(θ,σ(θ,m)) dλ′(θ,m). (37)

In addition, Definition 6 generalizes Definition 2, and requires players’ strategies to form
a Bayesian Nash equilibrium of the game 〈G,λ〉.

28The information structure λ can be viewed as “additional information” observed by both the Sender and
the Receivers, on top of the base information structure where the Sender observes the state and the Receivers
do not observe any signal.

24



Definition 6. A profile (λ,σ) is incentive compatible (IC) if σ is a Bayesian Nash equi-
librium in G = 〈G,λ〉. That is,

σS ∈ argmax
σ′
S :Θ×M→AS

US(λ,σ
′
S,σ−S) and σi ∈ argmax

σ′
i:M→Ai

Ui(λ,σ
′
i,σ−i) for i = 1, . . . , r. (38)

Note that in Definition 5, when the Sender deviates to a different information structure,
say λ′, we use the original strategy profile σ(θ,m) to predict players’ actions in the ensuing
Bayesian game 〈G,λ′〉. One might worry that the Sender may simultaneously change not
only her information structure but also her strategy σS(θ,m) in 〈G,λ′〉. This, however, is
unnecessary since the Sender’s optimal strategy in 〈G,λ′〉 will remain unchanged: the Sender
knows θ perfectly, her best response in 〈G,λ′〉 depends only on θ and the Receivers’ actions
(and not on her own information structure).

25


