
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 186 (2020) 104979

www.elsevier.com/locate/jet

Costly information acquisition ✩

Christopher P. Chambers a, Ce Liu b, John Rehbeck c,∗

a Department of Economics, Georgetown University, United States of America
b Department of Economics, Michigan State University, United States of America

c Department of Economics, Ohio State University, United States of America

Received 3 May 2018; final version received 12 December 2019; accepted 13 December 2019
Available online 19 December 2019

Abstract

We provide revealed preference characterizations for choices made under various forms of costly in-
formation acquisition. We examine nonseparable, multiplicative, and constrained costly information ac-
quisition. In particular, this allows the possibility of unknown time delay for acquiring information. The 
techniques we use parallel the duality properties in the standard consumer problem.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Acquiring information is an integral part of decisions under uncertainty. Most existing re-
search on costly information acquisition studies costs that are additively separable from the 
expected payoff. This assumes the cost incurred from acquiring information is independent of 
expected payoff. One can interpret these preferences as an individual having a fixed production 

✩ We thank Yaron Azrieli, Mark Dean, and Pietro Ortoleva for useful comments and suggestions. We also thank an 
anonymous referee for correcting an error in an earlier draft of the paper.

* Corresponding author.
E-mail addresses: cc1950@georgetown.edu (C.P. Chambers), cel013@ucsd.edu (C. Liu), rehbeck.7@osu.edu

(J. Rehbeck).
https://doi.org/10.1016/j.jet.2019.104979
0022-0531/© 2019 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jet.2019.104979
http://www.elsevier.com/locate/jet
mailto:cc1950@georgetown.edu
mailto:cel013@ucsd.edu
mailto:rehbeck.7@osu.edu
https://doi.org/10.1016/j.jet.2019.104979
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jet.2019.104979&domain=pdf


2 C.P. Chambers et al. / Journal of Economic Theory 186 (2020) 104979
technology to acquire information. However, the cost structures of information acquisition can 
be more complicated.

For example, there may be significant costs incurred from the time delay waiting for informa-
tion to arrive. Consider when an oil company is deciding between locations to drill for oil. To 
acquire information, in addition to the monetary expenses to finance geological surveys, there 
are also significant costs incurred from delayed realization of profits. Suppose the payoff from 
drilling at a site for each state of the world is given by a net-present-value from the time drilling 
begins. If the oil sites have a higher net-present-value, then this translates into higher costs in-
curred through discounting. Importantly, costs from time delay now interact with the expected 
payoff.

In this paper, we study a general model of costly information acquisition that allows for inter-
actions between the information cost and the expected payoff from the decision problem. Apart 
from the standard assumptions of expected utility maximization and Bayesian updating, the only 
additional assumption of the model is that the decision maker prefers higher expected payoffs. 
As special cases of the model, we characterize a representation with multiplicative costs of in-
formation and a representation with a constrained information set.

1.1. Importance of non-additive models

The paper of Caplin et al. (2015) investigates the particular case of the model studied here 
when costs are additive. Our model should be viewed as a direct generalization of this contri-
bution. This being said, the work is motivated by classical economic environments. There are 
several standard economic frameworks in which we would not expect costs to be additive.

The multiplicative cost model is a particularly interesting case. There are several standard 
economic environments in which we would expect costs to arise multiplicatively, rather than 
additively. The most compelling environment is when acquiring information results in a time 
delay. In standard exponential discounting models, delay enters payoffs multiplicatively (e.g. 
for discount factor δ, utility takes the form δDelay × Expected Payoff). Thus, when information 
acquisition induces different delays, the behavior cannot be rationalized by a model with an 
additive cost of information acquisition. For a formal representation, see Example 2.

There are also other examples when the costs are multiplicative. For example, the cost of in-
formation acquisition may accrue because of some probability of an absolute breakdown. For 
example, eliciting the information may involve some type of illegal activity where if the acquirer 
is caught, then they get nothing. In this case, the probability of not being caught enters multi-
plicatively into a (risk-neutral) individual’s utility.

A more straightforward example involves the individual directly contracting with an outside 
provider of information, who insists on a profit-sharing agreement with the individual. Here the 
share of profits asked for can depend on the information sold. In such a setup, the profit sharing 
obviously enters multiplicatively.

More broadly, the class of nonseparable costly information acquisition models nest behavior 
generated when there are potentially multiple sources of the cost of information acquisition. For 
example, the decision maker may incur both an additively separable cost to access an information 
structure, as well as a discounting cost from time delay.1

1 The exact content of this particular example remains unknown.
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Caplin et al. (2015) provide a revealed preference test for costly information acquisition when 
costs are additively separable. When there is only a cost from discounting, we show that behav-
ior is characterized essentially by the Homothetic Axiom of Revealed Preference (See Varian 
(1983)).

1.2. Methods and related literature

We take a revealed preference approach that builds on the recent contribution of Caplin et al. 
(2015). In particular, the model considers a decision maker facing actions with state-contingent 
payoffs. The decision maker chooses an information structure and makes stochastic choices con-
ditioning on the signal received from the information structure. Using state dependent stochastic 
choices, there is a natural revealed information structure that facilitates the analysis. Our main re-
sult characterizes the general model of costly information acquisition with an axiom on expected 
payoffs that resembles the Generalized Axiom of Revealed Preference.2 To emphasize the po-
tential interaction between expected utility and cost, we refer to such model as a nonseparable
costly information acquisition model.

Our results generalize the No Improving Attention Cycles condition of Caplin et al. (2015) in 
the same way that the Generalized Axiom of Revealed Preference generalizes the cyclic mono-
tonicity condition of Rockafellar (1966) or the condition of Koopmans and Beckmann (1957).3

Importantly, cyclic monotonicity is equivalent to rationalization via a quasi-linear utility func-
tion, which imposes cardinal restrictions on consumption data. Thus, Caplin et al. (2015) reflects 
a type of cardinal model, while the model here is ordinal. Using the intuition from the con-
sumer problem, we show that data consistent with nonseparable costly information preferences 
can be taken to satisfy quasiconcavity and weak Blackwell monotonicity without loss of gener-
ality.

The characterizations here exploit results and intuition from classical consumer theory. An 
experiment, or signal, is a probability distribution over posteriors (as in Blackwell (1953)). Math-
ematically, up to a normalization, probability measures and normalized price vectors can be 
viewed as the same object. In the consumer setting, expenditure is computed as the inner-product 
of price and quantity demanded. Similarly, the ex-ante payoff from the experiment can be com-
puted as the inner-product of the information structure and posterior value function. Thus, the 
ex-ante payoff can be treated as wealth.

The similarity between standard consumer theory and costly information acquisition extends 
beyond the correspondence of primitives. The nonseparable model of costly information acquisi-
tion is defined as a preference that is increasing in ex-ante payoff and depends on the information 
structure. Similarly, in consumer theory, the indirect utility function is increasing in wealth and 
depends on prices. For costly information acquisition, the utility of a menu is obtained through 
maximization with respect to information structures; while in consumer theory, the utility of a 
consumption bundle can be obtained through minimization of the indirect utility over price vec-
tors. While the optimization principle differs, the same underlying duality holds, which leads to 
the characterization by a condition resembling the General Axiom of Revealed Preference.

While we have highlighted the similarity to standard consumer theory, there are some techni-
cal differences. Most importantly, the information structures and posterior value functions are 

2 See Houthakker (1950); Richter (1966); Varian (1982); Chambers and Echenique (2016).
3 See also Brown Donald and Calsamiglia (2007) and Chambers et al. (2016) for variants of this condition in an explicit 

revealed preference framework.
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objects in infinite dimensional vector spaces. Thus, our proofs utilize the general results on 
quasi-concave duality that have been fruitfully studied by Chateauneuf and Faro (2009) and 
Cerreia-Vioglio et al. (2011a,b). However, once one makes this connection the results follow by 
leveraging existing revealed preference and duality techniques. As such, the paper also serves as 
a didactic exercise.

This paper is related to other works on costly information acquisition and boundedly rational 
behavior. Costly information acquisition has received study from various perspectives in Denti 
et al. (2016), Ellis (2018), and Matejka and McKay (2014). Costly information acquisition has 
received study from a revealed preference perspective in Caplin and Martin (2015) and Caplin et 
al. (2015). Boundedly rational behavior has been studied with revealed preference conditions in 
Fudenberg et al. (2015), Aguiar (2016), and Allen and Rehbeck (2019).

The paper proceeds as follows. Section 2 presents the notation and some useful facts. Sec-
tion 3.1 introduces and characterizes the nonseparable costly information acquisition model. 
Section 3.2 presents a model with a multiplicative cost of information acquisition. Section 3.3
presents a variant of the model whereby choice of information structure is costless, but is con-
strained to lie in some unknown set. Section 4 compares the nonseparable model to the additive 
model in Caplin et al. (2015), focusing on both the gap between behavioral axioms and out-of-
sample predictions. Section 5 discusses some limitations on when violations of the conditions 
can be detected. Section 6 discusses methods to numerically deal with unknown utility numbers 
and prior distributions. Finally, Section 7 contains our concluding remarks. Proofs are relegated 
to the appendix.

2. Preliminaries

2.1. Notation

We study a decision maker facing actions with state-contingent payoffs.4 Notation is consis-
tent with Caplin et al. (2015) whenever possible for ease of comparison. We study a variety of 
models that are increasing in ex-ante payoff and satisfy Bayes’ law. A decision maker chooses 
actions whose outcome depends on a finite number of states of the world. Let � denote a finite 
set of states. Let X denote a set of outcomes. Therefore, the set of all actions (state-contingent 
outcomes) is X�.

The set of all finite decision problems is given by A = {A ⊂ X� | |A| < ∞}. As in Caplin 
et al. (2015) we investigate the situation in which a researcher has a state dependent stochastic 
choice dataset from decision problems in A. For A ∈ A, �(A) refers to the set of probability 
distributions over actions in A.5

Definition 1. A state dependent stochastic choice dataset is a finite collection of decision prob-
lems D ⊂A and a related set of state dependent stochastic choice functions P = {PA}A∈D where 
PA : � → �(A). Denote the probability of choosing an action a conditional on state ω in deci-
sion problem A as PA(a | ω).

We assume that the prior beliefs of the decision maker μ ∈ � = �(�) are known. Moreover, 
we assume that the utility index u : X → � is a known function.

4 The ideas discussed here are broader if one considers general mappings over posteriors.
5 More generally we use �(S) to refer to Borel probability distributions over the set S.
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The following example illustrates the notation and primitives of the model. Throughout the 
paper, we will build on this example in order to illustrate the different testable implications for 
various models of costly information acquisition.

Example 1. The set of states is � = {ω1, ω2}, and the prior is given by μ = ( 1
2 , 1

2

)
. There are 

two menus A = {a, b} and A′ = {a′, b′}. Let the utilities from actions in menu A and A′ take the 
following values:

u(a(ω)) =
{

0 if ω = ω1

2 if ω = ω2
u(b(ω)) =

{
2 if ω = ω1

0 if ω = ω2

u(a′(ω)) =
{

0 if ω = ω1

10 if ω = ω2
u(b′(ω)) =

{
10 if ω = ω1

0 if ω = ω2
.

The state dependent choice probabilities are given by

PA(a | ω1) = 2

10
PA(a | ω2) = 8

10

PA′(a′ | ω1) = 3

10
PA′(a′ | ω2) = 7

10

where the choice of b and b′ in each state are given by the complementary probabilities.

We take an abstract approach to modeling the choice of an information structure. Each subjec-
tive signal is identified with its associated posterior beliefs γ ∈ �. Thus, an information structure 
is given by a finite support distribution over � that satisfies Bayes’ law.

Definition 2. The set of information structures, �, comprises all Borel probability distributions 
over �, π ∈ �(�), that have finite support and satisfy Bayes’ law. A distribution over posteriors 
satisfies Bayes’ law if the distribution over posteriors is a mean-preserving spread of the prior μ
denoted as

Eπ [γ ] =
∑

γ∈Supp(π)

γ π(γ ) = μ

where π(γ ) = Pr(γ | π) = ∑
ω∈� μ(ω)π(γ | ω).6

We now provide definitions necessary to discuss the ex-ante payoff. The ex-ante payoff is 
the utility an individual expects to receive for a given information structure. Given a utility in-
dex, each decision problem A ∈ A induces a posterior value function, fA : � → �, which maps 
posterior beliefs γ to the maximal utility possible from A under posterior γ . Formally, for any 
decision problem A and posterior belief γ

fA(γ ) = max
a∈A

∑
ω∈�

γ (ω)u(a(ω)).

6 A similar notion of Bayesian plausibility is commonly used in the Bayesian persuasion literature. See, for example, 
Kamenica and Gentzkow (2011).
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Definition 3. We denote the ex-ante payoff induced by an information structure π ∈ � as

π · fA =
∑

γ∈Supp(π)

π(γ )fA(γ )

where π(γ ) = Pr(γ | π) = ∑
ω∈� μ(ω)π(γ | ω).

This inner-product representation of ex-ante payoff is intuitive since fA is a continuous func-
tion on � and the set of continuous functions on � is topologically dual to the set of countably 
additive Borel measures on � (Aliprantis and Border (2006), Theorem 14.15). Recall, π is a 
finite support Borel probability measure on the set of posteriors, �.

We now briefly describe the types of costly information acquisition we examine. The nonsep-
arable information cost takes the form V (π · fA, π) where V is strictly increasing in the first 
component. The multiplicative cost model takes the form R(π)(π · fA) where R : � → �+. Fi-
nally, in the constrained information acquisition model, the decision maker chooses information 
structures from a set of feasible and free information structures, �c ⊆ �, and maximizes the 
expected utility.

2.2. Revealed information structures

While we present several models of costly information acquisition, the analysis relies on the 
recovery of a revealed information structure from the state dependent stochastic choice data. 
Using the procedure from Caplin et al. (2015), we associate each chosen action to a subjective 
information state. The revealed information structure may not be identical to the true information 
structure. However, the revealed information structure is a garbling (as defined in Blackwell 
(1953)) of the true information structure. The relationship between the true information structures 
and revealed information structures allows us to order the information structures and deduce 
conditions on revealed information. Without further delay, we define revealed posteriors and 
revealed information structures.

Definition 4. Given μ ∈ �, A ∈ D, PA ∈ P , and a ∈ Supp(PA), the revealed posterior γ̄ a
A ∈ � is 

defined as

γ̄ a
A(ω) = Pr(ω | a is chosen from A)

= μ(ω)PA(a | ω)∑
ν∈� μ(ν)PA(a | ν)

.

Definition 5. Given μ ∈ �, A ∈ D, and PA ∈ P , the revealed information structure π̄A ∈ � is 
defined by

π̄A(γ | ω) =
∑

{a∈Supp(PA)|γ̄ a
A=γ }

PA(a | ω)

and induces a revealed distribution on posteriors π̄A such that

π̄A(γ ) =
∑
ω∈�

μ(ω)π̄A(γ | ω).

The revealed information structure for decision problem A is a finite probability measure over 
the revealed posteriors.
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Example 1 (continued). The choices in Example 1 generate the following revealed posteriors

γ̄ a
A =

(
2

10
,

8

10

)
; γ̄ b

A =
(

8

10
,

2

10

)

γ̄ a′
A′ =

(
3

10
,

7

10

)
; γ̄ b′

A′ =
(

7

10
,

3

10

)
.

Each revealed posterior has the same probability of occurring so that

π̄A(γ̄ a
A) = π̄(γ̄ b

A) = π̄ (γ̄ a′
A′ ) = π̄(γ̄ b′

A′) = 1

2
.

The optimal decision rules for these posteriors give

fA(γ̄ a
A) = fA(γ̄ b

A) = 1.6 ; fA(γ̄ a′
A′ ) = fA(γ̄ b′

A′) = 1.4

fA′(γ̄ a
A) = fA′(γ̄ b

A) = 8 ; fA′(γ̄ a′
A′ ) = fA′(γ̄ b′

A′) = 7

Earlier, we mentioned that the revealed information structure may differ from the true infor-
mation structure. To capture this idea, we say an information structure π is consistent with a 
stochastic choice function PA, when PA can be generated by the decision maker using informa-
tion structure π . This is defined formally below.

Definition 6. For π ∈ � and PA ∈ P , we say π is consistent with PA if there exists a choice 
function CA : Supp(π) → �(A) such that for all γ ∈ Supp(π),

CA(a | γ ) > 0 ⇒
∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) for all b ∈ A

and for all ω ∈ � and a ∈ A

PA(a | ω) =
∑

γ∈Supp(π)

π(γ | ω)CA(a | γ ).

As mentioned before, we use the notion of garbling to partially order information structures.

Definition 7. The information structure π ∈ � (with posteriors γ j ) is a garbling of ρ ∈ � (with 
posteriors ηi ) if there exists a |Supp(ρ)| × |Supp(π)| matrix B with non-negative entries such 
that for all i ∈ {1, . . . , |Supp(ρ)|} we have 

∑
γ j ∈Supp(π) b

i,j = 1 and for all γ j ∈ Supp(π) and 
ω ∈ � that

π(γ j | ω) =
∑

ηi∈Supp(ρ)

bi,j ρ(ηi | ω).

In other words, π is a garbling of ρ when there is a stochastic matrix B that can be applied to 
ρ that yields π . We present some properties about revealed information structures and garblings 
that are used extensively in the analysis.

Lemma 1. If π is consistent with PA, then π̄A is a garbling of π .

Lemma 1 is proved in Caplin et al. (2015). The lemma says that if an information structure 
is consistent with the state dependent stochastic choice dataset, then the revealed information 
structure is a garbling.
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Lemma 2. Given a decision problem A ∈A and π, ρ ∈ � with π a garbling of ρ, then

ρ · fA ≥ π · fA.

Lemma 2 follows from Blackwell’s theorem (Blackwell, 1953). Blackwell’s theorem estab-
lishes the notion that some information structures are “more valuable” than others. In particular, 
if π is a garbling of ρ, then ρ yields weakly higher ex-ante payoff in any decision problem.

Lemma 3. For all decision problems A, B ∈ D if πA is an information structure consistent with 
choice data PA, then fB · πA ≥ fB · π̄A and fA · πA = fA · π̄A

The first inequality of Lemma 3 follows since π̄A is a garbling of πA. The second equality 
holds since πA and π̄A induce the same state dependent choices for menu A, so their ex-ante 
payoffs are identical.

3. Characterizing costly information models

In this section, we introduce three models of costly information acquisition. The nonseparable 
information cost model is the most general: it assumes only that the decision maker prefers higher 
ex-ante expected payoffs from choices and that more informative signals are more costly. Both 
the multiplicative cost model and the constrained information model are special cases of the 
nonseparable model.

3.1. Nonseparable information cost

We place minimal restrictions on a decision maker’s preferences on information structures. 
The only condition we impose is that preferences are monotone increasing in ex-ante payoff.

Definition 8. Given μ ∈ � and u : X → �, a state dependent stochastic choice dataset (D, P)

has a nonseparable costly information representation if there exists a function V : � × � →
� ∪ {−∞}, information structures {πA}A∈D , and choice functions {CA}A∈D such that:

1. Monotonicity: For all π ∈ � and for all t, s ∈ �, if t < s and V (t, π) > −∞, then V (t, π) <
V (s, π).

2. Non-triviality: For all t ∈ �, there exists πt ∈ � such that V (t, πt ) > −∞.
3. Information is optimal: For all A ∈D, πA ∈ arg maxπ∈�V (π · fA, π).
4. Choices are optimal: For all A ∈D, the choice function CA : Supp(πA) → �(A) is such that 

given a ∈ A and γ ∈ Supp(πA) with CA(a | γ ) = PrA(a | γ ) > 0, then∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) for all b ∈ A.

5. The data are matched: For all A ∈D, given ω ∈ � and a ∈ A,

PA(a | ω) =
∑

γ∈Supp(πA)

πA(γ | ω)CA(a | γ ).

The above definition is a large class of preferences. However, it allows for the presence of 
unknown discounting and additively separable information costs. We give some examples of 
functions nested in this class below.
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Example 2. We give a special case of V that allows for both unknown discounting from acquiring 
information and unknown additively separable costs. Consider when the function V takes the 
form

V (π · fA,π) = δ(π) (π · fA) − K(π)

where δ(π) ∈ [0, 1] gives the fraction of expected utility lost from discounting and K(π) speci-
fies the cost of accessing the information. We note the similarity to the polar form from Gorman 
(1953) which has been characterized using revealed preference by Cherchye et al. (2016).

Example 3. We consider the special case of a non-separable costly information acquisition given 
by

V (π · fA,π) = (π · fA) − K(π)

where  : R → R is an increasing transformation of the expected utility and K(π) is the cost of 
accessing information. This example takes the utils from expected utility and transforms them to 
the same units as the cost function. While this is cosmetically similar to the model by Caplin et 
al. (2015), the characterization there does not apply.

Example 4. A transformation of utils from expected utility may also be pertinent in the presence 
of discounting. This is represented as

V (π · fA,π) = δ(π)(π · fA) − K(π)

where  : R → R is an increasing transformation of the expected utility, δ(π) ∈ [0, 1] gives the 
fraction of utils lost from acquiring information, and K(π) is the cost of accessing information.

We now define the properties that completely characterize the model. The first condition is 
similar to the generalized axiom or revealed preference.

Condition 1 (Generalized Axiom of Costly Information (GACI)). We say the dataset (D, P) sat-
isfies GACI if for all sequences (π̄A1, fA1), . . . , (π̄Ak

, fAk
) with Ai ∈ D for which π̄Ai

· fAi
≤

π̄Ai
· fAi+1 for all i (with addition modulo k), then equality holds throughout.

Comparing this condition to GARP, we see that the π̄ play a role similar to prices and the f
terms play a role similar to consumption bundles albeit with the inequality reversed. The GACI 
condition rules out the possibility of cycles in ex-ante payoff across different decision problems. 
Using this condition, we invoke a version of Afriat’s theorem (see Chambers and Echenique 
(2016)).

Lemma 4 (Afriat’s Theorem). Let D be finite. For all (A, B) ∈D2, let αA,B ∈ �. If for all A ∈D
one has αA,A = 0 and for any sequence A1, A2, . . . , Ak ∈ D with αAi,Ai+1 ≤ 0 for all i (with 
addition mod k) it follows that αAi,Ai+1 = 0 for all i, then there exist numbers UA and λA > 0
such that for all (A, B) ∈D2, UA ≤ UB + λBαB,A.

The other condition that characterizes the nonseparable costly information representation is 
the no improving action switches (NIAS) condition. This condition was first examined in the 
study of Bayesian decision makers in Caplin and Martin (2015).
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Condition 2 (No Improving Action Switches (NIAS)). Given μ ∈ � and u : X → R, a dataset 
(D, P) satisfies NIAS if, for every A ∈D, a ∈ Supp(PA), and b ∈ A,∑

ω∈�

μ(ω)PA(a | ω)(u(a(ω)) − u(b(ω))) ≥ 0

As we show in Theorem 1 below, the combination of GACI and NIAS completely charac-
terizes the model of nonseparable costly information acquisition; moreover, one can impose 
additional properties on the nonseparable costly information representation. These conditions 
are monotonicity, quasiconcavity, and a normalization property on the function V (·, ·).

Condition 3. The function V : � × � → � ∪ {−∞} satisfies weak monotonicity in information 
if for any t ∈ � and π, ρ ∈ � with π a garbling of ρ, then

V (t, ρ) ≤ V (t,π).

The monotonicity condition says that if one adds noise to a signal ρ, then the noisier signal is 
cheaper. This is one definition of monotonicity and it agrees with the notion of informativeness 
introduced in Blackwell (1953).

Condition 4. The function V : � ×� → � ∪{−∞} is quasiconcave if for any (t1, π1), (t2, π2) ∈
� × � and λ ∈ [0, 1],

V (λt1 + (1 − λ)t2, λπ1 + (1 − λ)π2) ≥ min{V (t1,π1),V (t2,π2)}.

This condition says if there is a mixture between two ex-ante payoffs and information struc-
tures, then the utility of the mixture is weakly higher than the worst case of the two environments. 
In particular, this implies quasiconcavity in information structures if one sets t1 = π1 · f and 
t2 = π2 · f .

Condition 5. Define π0 as the information structure with π0(μ|ω) = 1 for all ω ∈ �. The func-
tion V : � × � → � ∪ {−∞} satisfies the normalization if V (0, π0) = 0.

The normalization condition says that utility is normalized to zero when the ex-ante payoff is 
zero and an individual does not update their prior.

Theorem 1. Given μ ∈ � and u : X → �, the dataset (D, P) has a nonseparable costly infor-
mation representation if and only if it satisfies GACI and NIAS. Moreover, if GACI and NIAS are 
satisfied, then one can find a V that rationalizes the data with a nonseparable costly information 
representation and satisfies Conditions 3, 4, and 5.7

While we characterize a general model, we show that it is without loss to assume an indi-
vidual’s payoff is quasiconcave in the information structure for a fixed level of expected utility. 

7 As an obvious consequence of Theorem 1, the model is also empirically equivalent to a model in which there is 
an endogenous (possibly singleton) set H of hidden actions. In particular, the model π ∈ maxh∈H V (u · π, h, π) is 
equivalent to ours since one could choose a set H to be a singleton. Thus, unlike Machina (1984), adding the potential 
for hidden actions does not change the content of observable behavior, and hence is non-testable. This is also true of the 
model in Caplin et al. (2015).
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Quasiconcavity might be interpreted as an informal statement that more informative structures 
are more costly to achieve. This is not meant in a Blackwell sense. Rather, given two information 
structures with known costs, taking a convex combination of them leads to a structure which is 
less costly than the highest cost of the two. The convex combination of information structures 
is intuitively less informative. While this property is certainly intuitive, the result is mathemati-
cal and owes to the structure of data and the same phenomenon whereby Afriat determined that 
convexity (as a property of preferences over consumption space) is non-testable.

Example 1 (continued). One can verify from the earlier information that NIAS holds. To test 
whether the stochastic choice pattern can be rationalized by the nonseparable costly information 
acquisition model, it remains to verify that GACI holds. To this end, observe that

π̄A · fA = 1.6 ; π̄A′ · fA = 1.4

π̄A · fA′ = 8 ; π̄A′ · fA′ = 7.

Now, since

π̄A · fA < π̄A · fA′ and π̄A′ · fA < π̄A′ · fA′ ,

there are no cycles that violate GACI. The stochastic choice pattern can be rationalized by the 
nonseparable costly information acquisition model.

3.2. Multiplicative information cost

We now study a multiplicative costly information representation. In this representation, the 
cost is interpreted as losing a fraction of the ex-ante payoff. We interpret this cost as resulting 
from discounting due to unobserved delay when acquiring information.

Definition 9. Given μ ∈ � and u : X → �+, a state dependent stochastic choice dataset (D, P)

has a multiplicative costly information representation if there exists a function R : � → �+, 
information structures {πA}A∈D , and choice functions {CA}A∈D such that:

1. Non-triviality: There exists π ∈ � such that R(π) > 0.
2. Information is optimal: For all A ∈D,

πA ∈ arg maxπ∈� [R(π)(π · fA)].
3. Choices are optimal: For all A ∈D, the choice function CA : Supp(πA) → �(A) is such that 

given a ∈ A and γ ∈ Supp(πA) with CA(a | γ ) = PrA(a | γ ) > 0, then∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) for all b ∈ A.

4. The data are matched: For all A ∈D, given ω ∈ � and a ∈ A,

PA(a | ω) =
∑

γ∈Supp(πA)

πA(γ | ω)CA(a | γ ).

We note that one difference in the statement of the multiplicative costly information repre-
sentation is that the utility index u is required to be non-negative. While this is more restrictive 
than the other cases, this is a common property of multiplicative representations. For example, 
Chateauneuf and Faro (2009) make such an assumption. The condition that characterizes the 
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multiplicative costly information representation is a version of the homothetic axiom of revealed 
preference; see Varian (1983).8

Condition 6 (Homothetic Axiom of Costly Information (HACI)). Given a datatset (D, P), define 
D0 = {A ∈D | ∑ω∈� μ(ω)u(a(ω)) = 0 for all a ∈ A}. We say the dataset (D, P) satisfies HACI

if for all sequences (π̄A1, fA1), . . . , (π̄Ak
, fAk

) with Ai ∈ D\D0, that 
∏k

i=1
π̄Ai

·fAi+1
π̄Ai

·fAi
≤ 1 where 

addition for the index i is modulo k.

HACI is essentially the homothetic axiom of revealed preference restricted to decision prob-
lems that give positive ex-ante payoff. The decision problems that give zero ex-ante payoff are 
removed: since utility is non-negative, these decision problems must consist entirely of actions 
that give zero payoff in every state. Any choice behavior in these decision problems can be triv-
ially rationalized, and they would create an indeterminate fraction above if not removed from the 
datatset.

As in the case of the nonseparable costly information representation, we are able to put ad-
ditional properties on the function R. For instance, we can find an R that respects monotonicity 
with respect to the Blackwell partial order, is concave, and satisfies a normalization property. We 
now define these properties and then give a statement of the theorem.

Condition 7. The function R : � → R+ satisfies weak monotonicity in information if for any 
ρ, π ∈ � where π is a garbling of ρ,

R(π) ≥ R(ρ).

Condition 8. The function R : � → R+ is concave in information structures if for any π1, π2 ∈
� and λ ∈ [0, 1],

R(λπ1 + (1 − λ)π2) ≥ λR(π1) + (1 − λ)R(π2).

Condition 9. Define π0 as the information structure with π0(μ|ω) = 1 for all ω ∈ �. The func-
tion R satisfies normalization if R(π0) = 1 and R : � → [0, 1].

Theorem 2. Given μ ∈ � and u : X → �+, the dataset (D, P) has a multiplicative costly infor-
mation representation if and only if it satisfies HACI and NIAS. Moreover, if HACI and NIAS are 
satisfied, then one can find an R that rationalizes the data with a multiplicative costly information 
representation that satisfies Conditions 7, 8, and 9.

Example 1 (continued). In additional to the general nonseparable cost model, the stochastic 
choice data in Example 1 can also be rationalized by the multiplicative cost model. Recall the 
multiplicative cost model is a special case of the nonseparable cost model. In fact, the data satis-
fies HACI since(

π̄A · fA′

π̄A · fA

)(
π̄A · fA′

π̄A · fA

)
=

(
80

16

)(
14

70

)
= 1.

8 It can also be derived as a relatively easy corollary from the work of Rochet (1987).
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Lastly, we note that one could re-parameterize R(π) to be (1 − K(π)) where K : � → [0, 1]
is interpreted as a fractional cost of information relative to the ex-ante payoff. Alternatively, one 
could re-parameterize R(π) to a function δT (π) where T (π) ≥ 0 represents time delay.

3.3. Constrained information acquisition

We now consider when an individual is constrained to choose an information structure from 
a fixed set of information structures. The interpretation is that the decision maker does not have 
access to the full set of information structures. Moreover, all available information structures are 
costless.

Definition 10. Given μ ∈ � and u : X → �, a state dependent stochastic choice dataset (D, P)

has a constrained costly information representation if there exists a set �c ⊆ � of available 
information structures, information structures {πA}A∈D , and choice functions {CA}A∈D such 
that:

1. Non-triviality: The set �c �= ∅.
2. Information is optimal: For all A ∈D, πA ∈ arg maxπ∈�c

π · fA.
3. Choices are optimal: For all A ∈D, the choice function CA : Supp(πA) → �(A) is such that 

given a ∈ A and γ ∈ Supp(πA) with CA(a | γ ) = PrA(a | γ ) > 0, then∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) for all b ∈ A.

4. The data are matched: For all A ∈D, given ω ∈ � and a ∈ A,

PA(a | ω) =
∑

γ∈Supp(πA)

πA(γ | ω)CA(a | γ ).

A constrained costly information structure is characterized by a condition similar to the Weak 
Axiom of Profit Maximization (Varian, 1984). Using this intuition, the revealed information 
structures are analogous to goods and fA are analogous to prices of goods. To avoid confu-
sion with the Weak Axiom of Revealed Preference, we call this the Binary Axiom of Costly 
Information.

Condition 10 (Binary Axiom of Costly Information (BACI)). The dataset (D, P) satisfies BACI
if for all A, B ∈ D, it follows that

π̄A · fA ≥ π̄B · fA.

We note that BACI is a stronger condition than GACI or HACI. In particular, one must check 
that the ex-ante expected utility in a menu is greater than the ex-ante utility obtained from 
any other observed revealed information structure. Similar to the nonseparable case, additional 
structure can be placed on a constrained costly information representation without restricting 
observable behavior. Using standard arguments, the constraint set �c can be made convex.

Theorem 3. Given μ ∈ � and u : X → �, the dataset (D, P) has a constrained costly informa-
tion representation if and only if it satisfies BACI and NIAS. Moreover, if BACI and NIAS are 
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satisfied, then one can find a convex set �c that rationalizes the data with a constrained costly 
information representation.

Example 1 (continued). The stochastic choice data in Example 1 cannot be rationalized by the 
constrained costly information model, since the dataset violates BACI: π̄A′ · fA′ = 7 < 8 = π̄A ·
fA′ .

The nonseparable information cost model generalizes all three alternative models of costly 
information acquisition. The constrained model, by contrast, is the most special one, and is a 
special case of both the additive and multiplicative models: it can be regarded as a multiplicative 
model with function R(.) equals to 1 on �c and 0 everywhere else; alternatively, it can also be 
regarded as an additive model where the additive cost function K(.) equals to 0 on �c and +∞
everywhere else.

4. Relationship between nonseparable and additive model

As a point of reference, we examine in detail how the nonseparable costly information repre-
sentation relates to the additive costly information representation in Caplin et al. (2015).

We first review the definition of an additive costly information model, and show that the 
nonseparable model generalizes the additive model. We then show that one particular limitation 
of the additive model is that it forbids individuals from choosing less information whenever 
the menu provides a higher return to gathering information, even if menus that generate higher 
returns might also entail higher costs for information.

Definition 11. Given μ ∈ � and u : X → �, a state dependent stochastic choice dataset (D, P)

has an additive costly information representation if there exists a function K : � → R̄ ∪ {∞}, 
information structures {πA}A∈D , and choice functions {CA}A∈D such that:

1. Non-triviality: There exists π ∈ � such that K(π) < ∞.
2. Information is optimal: For all A ∈D, πA ∈ arg maxπ∈� [π · fA − K(π)].
3. Choices are optimal: For all A ∈D, the choice function CA : Supp(πA) → �(A) is such that 

given a ∈ A and γ ∈ Supp(πA) with CA(a | γ ) = PrA(a | γ ) > 0, then∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) for all b ∈ A.

4. The data are matched: For all A ∈D, given ω ∈ � and a ∈ A,

PA(a | ω) =
∑

γ∈Supp(πA)

πA(γ | ω)CA(a | γ ).

Caplin et al. (2015) showed that an additive costly information representation is character-
ized by the NIAS condition and a no improving attention cycles (NIAC) condition. The NIAC 
condition is defined below.

Condition 11 (No Improving Attention Cycles (NIAC)). Given μ ∈ � and u : X → R, a dataset 
(D, P) satisfies NIAC if for all sequences (π̄A , fA ), . . . , (π̄A , fA ) with Ai ∈D, then
1 1 k k
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k∑
i=1

π̄Ai
· fAi

≥
k∑

i=1

π̄Ai+1 · fAi

where addition of the indices is modulo k.

The interpretation of NIAC is that one cannot cycle through the information structures and 
improve the ex-ante payoff. From the definition of NIAC and GACI, it is easy to see that if a 
dataset satisfies NIAC, then the dataset also satisfies GACI with equality.

Proposition 1. If the dataset (D, P) satisfies NIAC, then it also satisfies GACI.

To see why, we show that a violation of GACI implies a violation of NIAC. First, note a 
violation of GACI implies the existence of a sequence π̄Ai

· fAi
≤ π̄Ai

· fAi+1 , where, say, π̄Ak
·

fAk
< π̄Ak

· fA1 . Subtracting obtains that for each i, π̄Ai
· (fAi

− fAi+1) ≤ 0, with one inequality 
strict, whereby 

∑
i π̄Ai

· (fAi
− fAi+1) < 0. Rearranging terms now obtains a violation of NIAC. 

We come back to Example 1 again as an illustration.

Example 1 (continued). Observe that the stochastic choices described earlier cannot be rational-
ized by the additive cost model since

π̄A · fA + π̄A′ · fA′ = 8.6 < 9.4 = π̄A · fA′ + π̄A′ · fA

and so NIAC fails.

4.1. Gross return from information

We note that an additively separable model forbids an individual from choosing a less infor-
mative information structure when there are “higher gross return from information”, but this is 
allowed under the nonseparable cost model. This flexibility may be relevant if a menu generating 
higher gross return from information may at the same time entail higher costs to gathering infor-
mation. For example, this occurs when the cost of information is the discounting incurred from 
waiting. We formally define “higher returns to information” below.

Definition 12. Menu A provides a higher gross return from information than menu B if for any 
information structure π , and π ′ a garbling of π with π ′ �= π , we have9

π · fA − π ′ · fA > π · fB − π ′ · fB.

We establish that an individual with an additive costly information representation can never 
choose a less informative information structure when faced with a menu that has a higher gross 
return from information.

Proposition 2. Suppose D = {A, B} for dataset (D, P) with menu A providing a higher gross re-
turn from information than menu B . If π̄A is a garbling of π̄B and π̄A �= π̄B , then the choice data 
violates NIAC and thus cannot be generated by an additive costly information representation.

9 This definition is non-vacuous. In fact, it can be shown that menu A provides a higher gross return from information 
than menu B if and only if fA = fB + g where g is a strictly convex function.
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The next result shows that a nonseparable model, on the contrary, always accommodates this 
behavior if the menu that provides a higher gross return from information also yields higher 
utility for any posterior.

Proposition 3. Suppose D = {A, B} for dataset (D, P) with menu A providing a higher gross 
return from information than menu B . If π̄A is a garbling of π̄B , NIAS is satisfied, and fA > fB ,10

then this dataset is rationalized by a nonseparable costly information representation.

4.2. Out of sample prediction

One may wonder what type of data will violate GACI, or in other words, the extent to which 
the nonseparable model puts meaningful constraints on choice behavior. In this section, we first 
demonstrate the restrictions on choice probabilities for a specific two state environment, with a 
uniform prior and menus of two acts. This simple environment allows us to obtain a closed-form 
expression for the restrictions on choice probabilities. We then provide a numerical example as 
a further illustration.

Let the states be given by � = {ω1, ω2}. Let the menus be denoted A = {a, b} and A′ =
{a′, b′}. Assume without loss that u(a(ω1)) > u(b(ω1)) and u(b(ω2)) > u(a(ω2)). Similarly, 
assume that u(a′(ω1)) > u(b′(ω1)) and u(b′(ω2)) > u(a′(ω2)). We also assume each state is 
equally likely so that μ = ( 1

2 , 12 ).
As is shown in Caplin et al. (2015), NIAS on menu A in this environment is equivalent to

PA(a | ω1) ≥ max

{
u(b(ω2))−u(a(ω2))
u(a(ω1))−u(b(ω1))

PA(a | ω2),
u(b(ω2))−u(a(ω2))
u(a(ω1))−u(b(ω1))

PA(a | ω2) + u(a(ω1))+u(a(ω2))−u(b(ω1))−u(b(ω2))
u(a(ω1))−u(b(ω1))

.

The NIAS condition imposes similar restrictions for the choices from menu A′.
We focus on the case when choices are aligned. We say the choices of menu A are aligned 

with choices from menu A′ when

a = arg maxc∈{a,b}
∑

ω∈{ω1,ω2}
γ̄ a′
A′ (ω)u(c(ω)),

b = arg maxc∈{a,b}
∑

ω∈{ω1,ω2}
γ̄ b′
A′(ω)u(c(ω)).

Essentially, choices are aligned when actions that are “similar” across menus are chosen at the 
revealed posterior of the similar action. Note that action a and a′ both have greater payoffs in state 
ω1. Thus, a is aligned with a′ when it is chosen at the revealed posterior of a′. This assumption 
is made to make the algebra tractable. The same assumption is also implicitly assumed in Caplin 
et al. (2015). We also assume that the choice of menu A′ are aligned with A using analogous 
conditions.

Now, there is a violation of GACI if

π̄A · fA ≤ π̄A · fA′ and π̄A′ · fA′ ≤ π̄A′ · fA

with one inequality strict. Under the above assumptions of NIAS and aligned choices, a violation
of GACI is equivalent to the choice probabilities simultaneously satisfying the following two 
inequalities with one inequality strict:

10 We say fA > fB if fA(γ ) > fB(γ ) for all γ ∈ �.
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PA(a | ω1)�1 + PA(a | ω2)�2 ≤ β

PA′(a′ | ω1)�1 + PA′(a′ | ω2)�2 ≥ β
(1)

where

�1 = u(a(ω1)) − u(a′(ω1)) + u(b′(ω1) − u(b(ω1))

�2 = u(a(ω2)) − u(a′(ω2)) + u(b′(ω2) − u(b(ω2))

β = u(b′(ω1)) + u(b′(ω2)) − u(b(ω1)) − u(b(ω2)).

Therefore, any probabilities that satisfy these inequalities with at least one strict inequality violate 
a nonseparable costly information representation.

In general, suppose one has a menu M ∈ A such that M /∈ D. If the dataset D satisfies NIAS 
and GACI, we can use the information to place bounds on the information structures that are 
consistent with the model using the restrictions of GACI and NIAS. The full set of restrictions is 
given by a supporting set as defined in Varian (1984).

Denote the set of information structures that support the menu M that are consistent with 
GACI and NIAS by

SGACI (M) = {πM ∈ � | {(π̄A, fA)}A∈D ∪ (πM,fM) satisfies NIAS and GACI}.
This set places restrictions on πM that can be translated to restrictions on individual state de-
pendent stochastic choices. It is easy to define supporting sets for multiplicatively separable, 
additively separable, and constrained costly information representation. While the supporting set 
is often difficult to compute, it provides the full set of πM consistent with a given representation.

4.3. Numerical example: GACI vs NIAC

Let the payoffs of the actions in menus A and A′ take the following values:

u(a(ω)) =
{

5 if ω = ω1

0 if ω = ω2
u(b(ω)) =

{
1 if ω = ω1

4 if ω = ω2

u(a′(ω)) =
{

4 if ω = ω1

1 if ω = ω2
u(b′(ω)) =

{
2 if ω = ω1

3 if ω = ω2
.

We assume that choices are aligned to compare the restrictions of GACI from the inequalities 
in (1) to the restrictions of NIAC from Caplin et al. (2015). Substituting the above utility numbers 
into inequalities (1), we can see that the choice probabilities from A and A′ violate GACI if and 
only if

PA(a | ω1) + PA(b | ω2) ≤ 1 and PA′(a′ | ω1) + PA′(b′ | ω2) ≥ 1 (2)

with one inequality strict.
On the other hand, substituting the above utility numbers into the restrictions of NIAC from 

Caplin et al. (2015), we see that a violation of NIAC for this decision problem is equivalent to

PA(a | ω1) + PA(b | ω2) − [PA′(a′ | ω1) + PA′(b′ | ω2)] < 0. (3)

By comparing (2) and (3) above, it is straightforward to see that a violation of GACI implies a 
violation of NIAC, but not the other way around. In Appendix B, we provide Monte Carlo simu-
lations in the spirit of Bronars (1987) and Beatty and Crawford (2011) to examine the restrictions 
of GACI, NIAC, HACI, BACI, and NIAS for the experiments run in Dean et al. (2017) and some 
other illustrative examples.
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5. Limitations

The revealed preference conditions for costly information acquisition often provide interest-
ing bounds and intuition for these models. Moreover, we note that an additive costly information 
representation has the property of being translation invariant in ex-ante payoff. Similarly, a mul-
tiplicative costly information representation has the property of being scale invariant in ex-ante 
payoff.

One may want to look at choices from menus of this type to violate an additively separable 
or multiplicatively separable costly information representation, respectively. However, a dataset 
with menus that are additive utility translations of one another always satisfy NIAC. Similarly, a 
dataset with menus that are scale shifts of one another always satisfy HACI. Thus, these natural 
changes to environments do not provide any information on preferences. This shows that there 
are limits to what can be learned about preferences for these environments.

To show this result formally, we provide two definitions. For a menu A = {a1, . . . , an} ∈ A
and c ∈ � let A + c = {a1 + c, . . . , an + c} be the menu that adds a constant utility c to each 
act. That is, u

(
(ai + c)(ω)

) = u(ai(ω)) + c for i = 1, . . . , n and all ω ∈ �. Similarly, let cA =
{ca1, . . . , can} be the menu where the utility of all acts is multiplied by c, so u

(
(cai)(ω)

) =
cu(ai(ω)) for i = 1, . . . , n and all ω ∈ �.

Proposition 4. Let μ ∈ � and u : X → �. If the dataset (D, P) satisfies NIAS and D = {A +
c1, A + c2, . . . , A + cM} where cm ∈ � for all m = 1, . . . , M , then the dataset is rationalized by 
the additive costly information representation.

Proposition 5. Let μ ∈ � and u : X → �+. Suppose the dataset (D, P) satisfies NIAS and D =
{c1A, c2A, . . . , cMA} where cm ∈ �+ for all m = 1, . . . , M , then the dataset is rationalized by 
the multiplicative costly information representation.

6. Unknown utility, unknown prior

The model we examined requires utility and the prior to be known. In fact, we were able to 
write the revealed information structures in this “reduced-form” only because the prior probabili-
ties are known. With that being said, even if the utility is unknown, then some implications of the 
model may be derived. As a general rule, if utility is totally unrestricted, then the model has no 
content. This is a relatively standard observation, and owes to the fact that complete indifference 
can rationalize everything. On the other hand, in our abstract model, it makes sense to ask that 
utility lies in some set, U .11

A violation of the general costly information representation now occurs when GACI is vio-
lated for each u ∈ U . There are nontrivial examples of such violations. For example, there may 
be monotonicity restrictions on the prizes X that translate to U . In this case, we note that a 
non-trivial restriction of all models is that a state-wise dominated action cannot be chosen.

When the prior is not known, things can become more complicated. However, if one restricts 
the prior to be in a set, M, we can perform the tests using a grid search over priors.12 The com-
plications arise when one looks for a complete characterization without restrictions on the priors. 

11 The notion of a value function fA now necessarily also depends on u ∈ U .
12 Grid search procedures have been used to examine risk preferences using a revealed preference approach in Polisson 
et al. (2017).
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First, we would require a more general model of signal structures where the “reduced-form” of 
the revealed information structure is unknown. Second, we can no longer use the knowledge of 
μ to help understand the ex-ante expected utility or which actions are optimal. An interesting 
study of a related question is due to Oliveira and Lamba (2018).

7. Conclusion

In this paper, we provide revealed preference characterizations for several models of costly 
information acquisition. The most general form allows for costs from time delay in addition to 
an additively separable cost. The characterization of these models follows directly from classical 
revealed preference theory. We also provide examples showing how the information acquisition 
differs across models.

Appendix A. Proofs of results

Proof of Theorem 1. (⇒) First, we show that a nonseparable costly information representation 
satisfies NIAS. Fix A ∈ D, πA ∈ arg maxπ∈�V (π · fA, π), and CA : Supp(πA) → �(A) and 
a ∈ Supp(PA). By definition of a nonseparable costly information representation, we know that 
the V (πA · fA, πA) is monotone in πA · fA and choices are optimal conditional on posteriors. 
Thus, if a was chosen when γ was realized, then the expected utility must be weakly higher for 
these γ . For γ such that CA(a | γ ) > 0,∑

ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) ∀b ∈ A.

The proof now follows from arguments in Caplin et al. (2015) that are reproduced here for 
completeness. Recall that

γ (ω) = μ(ω)πA(γ | ω)∑
ν∈� μ(ν)πA(γ | ν)

,

which can be substituted on both sides and the denominator cancels so∑
ω∈�

μ(ω)πA(γ | ω)u(a(ω)) ≥
∑
ω∈�

μ(ω)πA(γ | ω)u(b(ω)) ∀b ∈ A.

Therefore,

∑
γ∈Supp(πA)

CA(a | γ )

[∑
ω∈�

μ(ω)πA(γ | ω)u(a(ω))

]

≥
∑

γ∈Supp(πA)

CA(a | γ )

[∑
ω∈�

μ(ω)πA(γ | ω)u(b(ω))

]
∀b ∈ A

since CA(a | γ ) are either zero or positive multiples of the earlier introduced inequalities. Next, 
recall from data matching that PA(a | ω) = ∑

γ∈Supp(πA) πA(γ | ω)CA(a | γ ). Therefore, we see 
that

∑
μ(ω)u(a(ω))PA(a | ω) =

∑
μ(ω)u(a(ω))

⎡
⎣ ∑

πA(γ | ω)CA(a | γ )

⎤
⎦

ω∈� ω∈� γ∈Supp(πA)
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=
∑

γ∈Supp(πA)

CA(a | γ )

[∑
ω∈�

μ(ω)u(a(ω))πA(γ | ω)

]

≥
∑

γ∈Supp(πA)

CA(a | γ )

[∑
ω∈�

μ(ω)u(b(ω))πA(γ | ω)

]

=
∑
ω∈�

μ(ω)u(b(ω))PA(a | ω)

where the first set of equalities follows from substitutions, the inequality follows from optimality 
conditional on γ , and the last equality follows from the same substitutions above. Rearranging 
this inequality shows that NIAS is satisfied.

Next, we show that a nonseparable costly information representation implies GACI. Ob-
serve arg maxπ∈� V (π · fA, π) = V (πA · fA, πA) by definition. We first establish that V (πA ·
fA, πA) > −∞ for all A ∈ D. To see this, notice that for all A ∈ D, fA is a continuous function 
on the compact set �, so fA achieves a minimum value cA. By non-triviality, there exists πc

A such 
that V (cA, πc

A) > −∞. Observe πc
A ·fA ≥ cA. By monotonicity, V (πc

A ·fA, πc
A) ≥ V (cA, πc

A) >
−∞. Since πA is the optimal choice, we have V (πA · fA, πA) ≥ V (cA, πc

A) > −∞.
Suppose without loss of generality that π̄Ai

·fAi
≤ π̄Ai

·fAi+1 for i = {1, . . . , k} (with addition 
modulo k). It follows that

V (πAi
· fAi

,πAi
) = V (π̄Ai

· fAi
,πAi

)

≤ V (π̄Ai
· fAi+1 ,πAi

) (4)

≤ V (πAi
· fAi+1 ,πAi

) ≤ V (πAi+1 · fAi+1 ,πAi+1)

Since V (π̄Ai
· fAi

, πAi
) = V (πAi

· fAi
, πAi

) > −∞ for all i, strict monotonicity in the first 
component of V implies that the inequality in (4) is strict if π̄Ai

· fAi
< π̄Ai

· fAi+1 . Suppose 
there is a strict inequality in the sequence, then we obtain the contradiction V (πA1 · fA1, πA1) <
V (πA1 · fA1, πA1). Consequently, we must have π̄Ai

· fAi
= π̄Ai

· fAi+1 for all i.
(⇐) The converse is a direct application of Afriat’s Theorem. Let αA,B = −π̄A · (fB −fA) for 

all (A, B) ∈ D2. Observe that by GACI, the condition in Afriat’s Theorem is satisfied. Conclude 
there is UA and λA > 0 such that for all (A, B) ∈ D2, UA ≤ UB − λBπ̄B · (fA − fB). Taking 
negatives and letting ŨA = −UA, we have

ŨB + λBπ̄B(fA − fB) ≤ ŨA.

Most of the remaining construction follows Afriat’s theorem directly. Let C(�) be the set of 
continuous, convex functions on �. Define U : C(�) → � by

U(f ) = max
A∈D

ŨA + λAπ̄A · (f − fA)

Clearly, U is convex, continuous, and monotone increasing13 (as the maximum of a finite number 
of continuous affine functionals). For every A ∈ D, U(fA) = ŨA by construction. Moreover, 
for every A ∈ D, if π̄A · f ≥ π̄A · fA, then U(f ) ≥ U(fA), which is also straightforward by 
construction.

Define V : � × � → � ∪ {−∞} by V (t, π) = inff ∈C(�){U(f ) : π · f ≥ t}.

13 The functional U is monotone increasing in f if (f − g)(γ ) > 0 for all γ ∈ �, then U(f ) > U(g).
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To see that the monotonicity condition is satisfied for a fixed π , consider two numbers t1 > t2, 
we show that for every fixed π , V (t1, π) > V (t2, π) if V (t2, π) > −∞.

Let �t ≡ t1 − t2. Note that14

V (t1,π) = inf
f ∈C(�)

{U(f ) : π · f ≥ t1}
= inf

f ∈C(�)
{U(f ) : π · (f − �t) ≥ t2}.

The second equality follows because π is a probability measure. In addition, since π̄A is a prob-
ability measure for every A ∈D, by the definition U(.),

U(f̃ + �t) = max
A∈D

{ŨA + λAπ̄A · (f̃ + �t − fA)}
= max

A∈D
{ŨA + λAπ̄A · (f̃ − fA)} + �t

= U(f̃ ) + �t

Now, let f̃ ≡ f − �t . Then

V (t1,π) = inf
f̃ +�t∈C(�)

{U(f̃ + �t) : π · f̃ ≥ t2}

= inf
f̃ ∈C(�)

{U(f̃ + �t) : π · f̃ ≥ t2}

= inf
f̃ ∈C(�)

{U(f̃ ) + �t : π · f̃ ≥ t2}

= inf
f̃ ∈C(�)

{U(f̃ ) : π · f̃ ≥ t2} + �t

= V (t2,π) + �t > V (t2,π).

The assumption that for each t ∈ �, there exists a πt ∈ � such that V (t, πt ) > −∞ is also 
satisfied. In fact, we will show V (t, π̄A) > −∞ for any t ∈ � and A ∈ D. For any t ∈ �, let 
Gt− = {g ∈ C(�) | U(g) ≤ t}. Gt− is closed and convex by the continuity and convexity of U(·).

The set of continuous functions on γ , of which C(�) is a subset, is the topological dual to 
the set of signed Borel measures with bounded variation over � (Aliprantis and Border (2006)
Theorem 14.15). Let M(�) be the set of such measures on �.

Fix Â ∈D. Note that for any f ∈ Gt− that

Ũ
Â

+ λ
Â
π̄

Â
· (f − f

Â
) ≤ U(f ) = max

A∈D
ŨA + λAπ̄A · (f − fA) ≤ t.

Rearranging the equation gives

sup
f ∈Gt−

π̄
Â

· f ≤ t − Ũ
Â

+ λ
Â
π̄

Â
f

Â

λ
Â

Let K(t) = t−Ũ
Â
+λ

Â
π̄

Â
f

Â

λ
Â

. Note that the function K is monotonically increasing with domain and 

range both spanning the reals. The function K−1 is well-defined and monotonic, with K−1(x) >
−∞ for all x ∈ �.

14 We abuse notation in a standard way by identifying a constant function with the value it takes: we use f + �t to 
denote the function where (f + �t)(γ ) = f (γ ) + �t for all γ ∈ �.
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It follows that Gt− ⊆ {f | π̄
Â

· f ≤ K(t)}. Note that for all f such that π̄
Â

· f ≥ K(K−1(t)) it 
follows that, U(f ) ≥ Ũ

Â
+ λ

Â
π̄

Â
· (f − f

Â
) ≥ K−1(t). It follows by definition that for all t ∈ �

V (t, π̄
Â
) = inf

f ∈C(�)
{U(f ) : π̄

Â
· f ≥ t} ≥ K−1(t) > −∞.

We now assert that for all A ∈D, π̄A ∈ arg maxπ∈� V (π ·fA, π). First, from the monotonicity 
property of the U function

V (π̄A · fA, π̄A) = inf
f ∈C(�)

{U(f ) : π̄A · f ≥ π̄A · fA}
= U(fA)

Second, for any π ∈ �, we have V (π · fA, π) = inff ∈C(�){U(f ) : π · f ≥ π · fA} ≤ U(fA), 
since π · fA ≥ π · fA. Therefore V (π · fA, π) ≤ V (π̄A · fA, π̄A) for all π ∈ �. Therefore, the 
revealed information structure is optimal for V .15

The function

Ṽ (t, π) = V (t,π) − V (0,π0)

satisfies Condition 3, Condition 4, and Condition 5 while maintaining the other properties above. 
First, note that Ṽ (0, π0) = V (0, π0) − V (0, π0) = 0 so the normalization condition is satisfied.

Since the difference of V and Ṽ is a constant, we can check quasiconcavity and weak mono-
tonicity of V . Next, we check weak monotonicity. If π is a garbling of ρ, then

V (t, ρ) = inf
f ∈C(�)

{U(f ) | ρ · f ≥ t}
≤ inf

f ∈C(�)
{U(f ) | π · f ≥ t}

= V (t,π)

since π · f ≥ t implies that ρ · f ≥ t by Lemma 2 so the infimum is taken over a weakly smaller 
set of functions. Thus, weak monotonicity in the second argument of V holds.

Lastly, we examine quasiconcavity of V . Let (t1, π1), (t2, π2) ∈ � × �, then for λ ∈ [0, 1]
V (λt1 + (1 − λ)t2, λπ1 + (1 − λ)π2)

= inf
f ∈C(�)

{U(f ) | λπ1 · f + (1 − λ)π2 · f ≥ λt1 + (1 − λ)t2}.
Note that if λπ1 · f + (1 − λ)π2 · f ≥ λt1 + (1 − λ)t2, then either π1 · f ≥ t1 or π2 · f ≥ t2. 
Therefore, for f ∈ C(�) we have

{f | λπ1 · f + (1 − λ)π2 · f ≥ λt1 + (1 − λ)t2} ⊆ {f | π1 · f ≥ t1} ∪ {f | π2 · f ≥ t2}.
Therefore, the infimum of U over the first set, V (λt1 +(1 −λ)t2, λπ1 +(1 −λ)π2), is greater than 
or equal to the infimum of U over the second set, min{V (t1, π1), V (t2, π2)}. Thus, quasiconcavity 
holds.

We now show data matching and choices are optimal by following Caplin et al. (2015) and 
using NIAS. Next we show that there exists stochastic choice functions {CA : Supp(π̄A) →
�(A)}A∈D that satisfy optimality and matches data.

15 We note that a version of Roy’s identity holds (Roy (1947)). Observe that by definition of V , if π · fA ≥ w implies 
U(fA) ≥ V (w, π). We conclude that π · fA ≥ π̄A · fA implies U(fA) ≥ V (π̄A · fA, π). We have already shown that 
U(fA) = V (π̄A · fA, π̄A). Thus, if π · fA ≥ π̄A · fA , then V (π̄A · fA, π̄A) ≥ V (π̄A · fA, π).
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For each γ ∈ Supp(π̄A), define:

CA(a | γ ) =
⎧⎨
⎩

PA(a)∑
{b∈A:γ̄ b

A
=γ } PA(b)

if γ̄ a
A = γ

0 otherwise

where PA(a) = ∑
ω∈� PA(a | ω)μ(ω) is the unconditional probability of choosing action a from 

decision problem A. Note the CA(a | γ ) > 0 only if γ̄ a
A = γ . The NIAS condition implies that∑

ω∈�

μ(ω)PA(a | ω)u(a(ω)) ≥
∑
ω∈�

μ(ω)PA(b | ω)u(b(ω))

⇒
∑
ω∈�

γ̄ a
A(ω)u(a(ω)) ≥

∑
ω∈�

γ̄ a
A(ω)u(b(ω))

The second line follows by dividing both sides by PA(a). Thus, NIAS ensures that the choices 
are optimal.

It remains to show that the data are matched. In other words, PA is generated from the infor-
mation structure π̄A and choices CA. First, note that for any b, b′ ∈ A such that γ̄ b

A = γ̄ b′
A , implies 

that for any ω ∈ � such that γ̄ b
A(ω) > 0, then

PA(b | ω)

PA(b′ | ω)
= PA(b)

PA(b′)
.

Thus, for every ω ∈ � and a ∈ A such that PA(a) > 0, then∑
γ∈Supp(π̄A)

π̄A(γ |ω)CA(a|γ ) = π̄A(γ̄ a
A|ω)CA(a|γ̄ a

A)

=
∑

{c∈A:γ̄ c
A=γ̄ a

A}
PA(c|ω)

PA(a)∑
{b∈A|γ̄ b

A=γ̄ a
A} PA(b)

=
∑

{c∈A|γ̄ c
A=γ̄ a

A}
PA(c|ω)

PA(a|ω)∑
{b∈A|γ̄ b

A=γ̄ a
A} PA(b|ω)

= PA(a|ω).

Therefore, the data are matched. �
Proof of Theorem 2. We note that NIAS is equivalent to optimal choices and matched data. 
Therefore, we focus on non-triviality and optimal information.

(⇒) We show that a multiplicatively costly information representation satisfies HACI. For all 
A ∈ D, let πA ∈ arg maxπ∈�[R(π)(π · fA)].

First, we show for A ∈ D \D0, that (π · fA) > 0 for all information structures and R(πA) >
0. Let π0 denote the non-informative information structure with π0(μ) = 1. By assumption, 
π0 · fA > 0 for any A ∈ D\D0. Since fA is convex, π · fA > 0 for all information structures. 
In particular, let π ′ ∈ � be an information structure such that R(π ′) > 0, then π ′ · fA > 0 as 
well. Note that such a π ′ ∈ � with R(π ′) > 0 exists by nontriviality. For any A ∈D \D0 and for 
any π ∈ �, we have R(πA)(πA · fA) ≥ R(π ′)(π ′ · fA) > 0 since πA is the optimal information 
structure. Therefore, for all A ∈D\D0 we have R(πA) > 0.
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Next, for any pair Ai, Ai+1 ∈ D\D0, we have

R(πAi
)(π̄Ai

· fAi
) = R(πAi

)(πAi
· fAi

)

≥ R(πAi+1)(πAi+1 · fAi
)

≥ R(πAi+1)(π̄Ai+1 · fAi
) > 0

where the equality follows from equivalent choices, the first inequality follows from optimality, 
the second inequality follows from Lemma 2, and the last term is greater than zero by the earlier 
arguments. Rearranging the end terms of the inequalities,

R(πAi+1)(π̄Ai+1 · fAi
)

R(πAi
)(π̄Ai

· fAi
)

≤ 1.

We can now take any cycle A1, . . . , Ak ∈ D\D0 and take products to see that costs will be 
removed so

k∏
i=1

R(πAi+1)(π̄Ai+1 · fAi
)

R(πAi
)(π̄Ai

· fAi
)

=
k∏

i=1

(π̄Ai+1 · fAi
)

(π̄Ai
· fAi

)
≤ 1

where the indices are calculated with addition modulo k. Let σ : {1, . . . , k, } → {1, . . . , k} where 
σ(1) = 1, σ(2) = k, σ(3) = k − 1, . . . , σ(k) = 2.16 Therefore,

k∏
i=1

π̄Aσ(i)
· fAσ(i+1)

π̄Aσ (i) · fAσ (i)

≤ 1

and HACI is satisfied.
(⇐) Now we show from HACI that we can generate a non-trivial utility function. Following 

Varian (1983), for all A ∈D let UA be the maximum of

k−1∏
i=1

π̄Ai
· fAi+1

π̄Ai
· fAi

(5)

where the maximization is taken over all finite sequences {Ai}k−1
i=1 ⊆ D \D0 with Ak = A. Note 

that if A ∈ D0 then UA = 0. Since the number of menus in D\D0 is finite, the number of se-
quences {Ai}k−1

i=1 not containing cycles is also finite. Moreover by HACI, the presence of any 
cycles in a sequence {Ai}k−1

i=1 only decreases the value of (5). Therefore the maximum in (5)
exists for each A. Note that UA > 0 for all A ∈D \D0, and for all A, B ∈D

UB ≥ UA

π̄A · fB

π̄A · fA

(6)

by definition.17 Define

U(f ) =
{

maxA∈D
[
UA

π̄A·f
π̄A·fA

]
if f ∈ C+(�)

+∞ otherwise

16 Note addition is still modulo k in the index so σ(k + 1) = 1.
17 We define 0 · ∞ = 0 as is standard in convex analysis.
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where C+(�) are nonnegative convex continuous functions on �. From the definition of U , it 
is obvious that U(·) is homogenous of degree 1 (as the supremum of a finite number of linear 
functionals), and U(f ) ≥ 0 for all f ∈ C(�). In addition, inequality (6) implies that for all 
A ∈ D that U(fA) = UA. It is also straightforward that U is convex, continuous, and monotone 
increasing over C+(�). Finally, we have

U(f ) ≥ U(fA) if π̄A · f ≥ π̄A · fA (7)

which is also straightforward by construction.
Let M+(�) be the set of non-negative Borel measures over � with bounded variation. Define 

V : �+ × M+(�) → �+ by V (t, m) = inff ∈C(�){U(f ) : m · f ≥ t}. Now, we show that V (·, ·)
is indeed of the multiplicative form. By the definition of V , for any t > 0 we have

V (t,m) = inf
f ∈C(�)

{U(f ) : m · f

t
≥ 1}

= inf
tf ′∈C(�)

{U(tf ′) : m · f ′ ≥ 1}
= inf

f ′∈C(�)
{U(tf ′) : m · f ′ ≥ 1}

= t inf
f ′∈C(�)

{U(f ′) : m · f ′ ≥ 1}
= tR̄(m)

where the first equality comes from rearrangement, the second equality comes from f ′ = f/t , the 
third equality comes since any tf ′ can be expressed as a function, the fourth equality holds since 
U is homogeneous degree 1, and the final equality holds by defining the function R̄ : M+(�) →
�+ as R̄(m) = inff ∈C(�){U(f ) : m · f ≥ 1}.

Next, if t = 0 then V (t, m) = 0 which is consistent with the multiplicative form. To see this, 
consider the constant function f0(γ ) = 0 for all γ ∈ � and see that V (0, π) ≤ U(f0) = 0. Thus, 
V (0, π) = 0 · R̄(π) = 0. Let R̃ : � → �+ be the restriction of R̄ to �.

Since U(f ) ≥ 0 for all f ∈ C(�), we have R̃(π) = inff ∈C(�){U(f ) : π · f ≥ 1} ≥ 0. More-
over, we show that R̃(π) < ∞. Consider the constant function f1(γ ) = 1 for all γ ∈ � so that 
π · f1 = 1. Therefore, we deduce

R̃(π) ≤ max
A∈D

UA

π̄A · fA

< ∞.

We also prove that there are π ∈ � such that R̃ > 0. For an arbitrary A ∈D\D0, we have

R̃(π̄A) = V (π̄A · fA, π̄A)

π̄A · fA

= inff ∈C(�){U(f ) : π̄A · f ≥ π̄A · fA}
π̄A · fA

= U(fA)

π̄A · fA

= UA

π̄A · fA

> 0

that follows from π̄A · fA > 0 and the definition of R̃. Therefore, R̃(π̄A) > 0.
We note that if π is a garbling of ρ then R̃(ρ) ≤ R̃(π) since R̃(π) = inff ∈C(�){U(f ) | π ·f ≥

1} and π · f ≥ 1 implies ρ · f ≥ 1 so the infimum is over a weakly larger set. Let π0 as the 
information structure with π0(μ|ω) = 1 for all ω ∈ �. Since � is the set of information sets 
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consistent with Bayes’ Law, π0 is a garbling of any π ∈ �. Thus, for all π ∈ �, R̃(π0) ≥ R̃(π) >
0. Lastly, rescale the function R̃(.) with 1/R̃(π0), and define

R(π) = R̃(π)

R̃(π0)
.

We now assert that for all A ∈ D, π̄A ∈ arg maxm∈M+(�) V (π · fA, π). First, from inequality 
(7) we have

V (π̄A · fA, π̄A) = inf
f ∈C(�)

{U(f ) : π̄A · f ≥ π̄A · fA}
= U(fA)

Second, for any m ∈ M+(�), we have V (m · fA, m) = inff ∈C(�){U(f ) : m · f ≥ m · fA} ≤
U(fA), since m · fA ≥ m · fA. Therefore V (m · fA, m) ≤ V (π̄A · fA, π̄A) for all m ∈ M+(�). 
From this, we have that

π̄A ∈ arg max
π∈�

V (π · fA,π)

R̃(π0)
= arg maxπ∈�

R̃(π)

R̃(π0)
(π · fA)

= arg maxπ∈�R(π)(π · fA)

where π̄A is an optimizer since this holds over all of M+ and thus holds over �. Therefore πA is 
optimal for the rescaled V and has the multiplicative costly representation.

We note that the R was already shown to satisfy weak monotonicity in information and the 
normalization property. The R̃(m) defined in Theorem 2 is homogenous of degree one, increasing 
in m, and quasiconcave by the same arguments used in Theorem 1. By Theorem 1 in Prada 
(2011), we have that R̄ is concave. Therefore, R̃ restricted to � is the restriction of R̄ to a 
convex set and is thus concave. Finally, R is concave as it is a positive re-scaling. �
Proof of Theorem 3. We note that NIAS is equivalent to optimal choices and matched data. 
Therefore, we focus on non-triviality and optimal information.

(⇒) Suppose the data is represented by a constrained costly information representation and 
for all A ∈ D that πA ∈ arg maxπ∈�c

π · fA. Since the utility depends only on ex-ante payoff, 
then πA · fA = π̄A · fA ≥ πB · fA ≥ π̄B · fA. The first equality follows from equivalent choices, 
the next inequality follows from optimality, while the final inequality follows Lemma 2.

(⇐) Suppose BACI holds. Let �̄c = ⋃
A∈D{π̄A}. For D nonempty, �c �= ∅.18 Moreover, for 

any A, B ∈D, we have

π̄A · fA ≥ π̄B · fA.

In other words, for all A ∈ D we have π̄A ∈ arg maxπ∈�̄c
π · fA. Therefore nontriviality and 

optimal information hold.
Let conv(�̄c) = conv

(⋃
A∈D{π̄A}). Here conv(·) represents the convex hull of information 

structures. For all B ∈D let λB ∈ [0, 1] such that 
∑

B∈D λB = 1. Now for fixed A ∈D∑
B∈D

λBπ̄B · fA ≤
∑
B∈D

λBπ̄A · fA = π̄A · fA

18 If D = ∅, then let �c = �.
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where the inequality follows from BACI. The result holds for any fixed A and convex combina-
tion so that π̄A ∈ arg maxπ∈conv(�̄c)

π · fA. Thus, the constraint set can be chosen convex without 
loss of generality. �
Proof of Proposition 2. To satisfy NIAC it is required that

π̄A · fA + π̄B · fB ≥ π̄A · fB + π̄B · fA

or equivalently,

π̄B · fA − π̄A · fA ≤ π̄B · fB − π̄A · fB

However, since menu A provides a higher return to information than menu B and π̄A is a garbling 
of π̄B , then

π̄B · fA − π̄A · fA > π̄B · fB − π̄A · fB

which violates NIAC. �
Proof of Proposition 3. Note that GACI is violated for a dataset of two menus if and only if

π̄A · fA ≤ π̄A · fB and π̄B · fB ≤ π̄B · fA

with one inequality strict. Since fA > fB , it follows that

π̄A · fA > π̄A · fB

and there can be no violation of GACI. Since the dataset was assumed to satisfy NIAS, the data 
is rationalized by a nonseparable costly information representation. �
Proof of Proposition 4. For any sequence (π̄A1, fA1), . . . , (π̄Ak

, fAk
) with Ai ∈ D. Note that 

π̄Ai
· fAi

= π̄Ai
· fA + cmi

and π̄Ai+1 · fAi
= π̄Ai+1 · fA + cmi

for some mi ∈ {1, . . . , M}. This 
implies that

k∑
i=1

π̄Ai
· fAi

=
k∑

i=1

π̄Ai
· fA + cmi

=
k∑

i=1

π̄Ai+1 · fA + cmi
=

k∑
i=1

π̄Ai+1 · fAi

where addition of the index is modulo k. Therefore, NIAC is satisfied in addition to NIAS and 
the dataset is rationalized by the additive costly information representation. �
Proof of Proposition 5. For any sequences (π̄A1, fA1), . . . , (π̄Ak

, fAk
) with Ai ∈ D\D0. Note 

that π̄Ai
· fAi

= cmi
π̄Ai

· fA and π̄Ai
· fAi+1 = cmi+1 π̄Ai

· fA for some mi, mi+1 ∈ {1, . . . , M}. 
This implies that

k∏
i=1

π̄Ai
· fAi+1

π̄Ai
· fAi

=
k∏

i=1

cmi

cmi+1

= 1

since addition of the index is modulo k and each cmi
term appears in the numerator and denom-

inator. Therefore, HACI is satisfied in addition to NIAS and the dataset is rationalized by the 
multiplicative costly information representation. �
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Table 1
Payoffs for Environments 1-4.

Environment E1 E2 E3 E4

β1 40 40 30 30
β2 55 52 55 52

Appendix B. Bronar’s power examples

In this appendix, we detail several additional examples and provide Monte Carlo simulations 
in the spirit of Bronars (1987) and Beatty and Crawford (2011) to check how likely random 
choices will satisfy or refute the conditions in the main text. We first detail how we generate the 
choices and then describe the different decision environments. Lastly, we provide the percentage 
of datasets that satisfy the conditions for each environment. We consider the environments of 
Dean et al. (2017) which might be of interest to other researchers and expand the example in 
Section 4.3.

Consider the menu, A, from the dataset D ⊂ A. We follow the below procedure to generate 
the state dependent stochastic choices P(a | ω).

1. For every state ω ∈ � and for every a ∈ A, draw a random variable Za,ω independently 
distributed according to the uniform distribution on the unit interval, U [0, 1].

2. Set the state dependent choice probability PA(a | ω) = Za,ω∑
b∈A Zb,ω

.

This procedure gives some sense of how likely a random dataset passes the various conditions. 
We note this is just one sampling procedure and that others may produce different results. We 
encourage interested readers to check the sampling distribution that makes sense for the given 
application of the tests in the main text. A description of the different environments we examine 
is below.

Example 5. This is the environment of Experiment 1 in Dean et al. (2017). We consider envi-
ronments where the prior is given by μ = ( 1

2 , 12 ). There are actions a, b, and c whose payoffs 
are

u(a(ω)) =
{

50 if ω = ω1

50 if ω = ω2
u(b(ω)) =

{
β1 if ω = ω1

β2 if ω = ω2

u(c(ω)) =
{

100 if ω = ω1

0 if ω = ω2

and the dataset consists of the menus {a, b} and {a, b, c}. The values of β1 and β2 are given in 
Table 1. We refer to these as environments one through four (E1-E4).

We denote the corresponding datasets as DE1, DE2, DE3, and DE4, respectively.

Example 6. This is the environment of Experiment 2 in Dean et al. (2017). We call this envi-
ronment five (E5). We consider environments where the prior is given by μ = ( 1

2 , 12 ). There are 
actions ai, bi whose payoffs are

u(ai(ω)) =
{

αi if ω = ω1

0 if ω = ω2
u(bi(ω)) =

{
0 if ω = ω1

αi if ω = ω2
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Table 2
Payoffs for indexes of Environment 5.

Index (i) 1 2 3 4

αi 5 40 70 90

Table 3
Payoffs for indexes of Environments 6-9.

Index (j ) 1 2 3 4

γj 0 2 4 6
ξj 0 1 2 3

Table 4
Priors for Environments 10-13.

Environment E10 E11 E12 E13

Prior (μ) ( 1
2 , 1

2 ) ( 3
5 , 2

5 ) ( 3
4 , 1

4 ) ( 17
20 , 3

20 )

and the dataset consists of the menus Ai = {ai, bi} for i ∈ {1, 2, 3, 4} where the values for αi are 
in Table 2.

We denote the dataset with DE5.

Example 7. Here we use the conditions of the decision problem from Section 4.3 and several 
others. We consider environments where the prior is given by μ = ( 1

2 , 12 ). We call these environ-
ments six through (E6-E9). There are actions aj , bj , a′

j , b
′
j whose payoffs are

u(aj (ω)) =
{

5 + γj if ω = ω1

0 + ξj if ω = ω2
u(bj (ω)) =

{
1 + ξj if ω = ω1

4 + γj if ω = ω2

u(a′
j (ω)) =

{
4 + γj if ω = ω1

1 + ξj if ω = ω2
u(b′

j (ω)) =
{

2 + ξj if ω = ω1

3 + γj if ω = ω2
,

where menus are given by Bj = {aj , bj } and B ′
j = {a′

j , b
′
j } for j ∈ {1, 2, 3, 4} where the values 

for ξj and γj are in Table 3. We note that the role of γj is to increase the incentive of choosing 
the higher utility action in each state.

We consider datasets DE6 = {B1, B ′
1}, DE7 = ⋃2

j=1{Bj , B ′
j }, DE8 = ⋃3

j=1{Bj , B ′
j } and 

DE9 = ⋃4
j=1{Bj , B ′

j }.

Example 8. This is the environment of Experiment 3 in Dean et al. (2017). We call these en-
vironments ten through thirteen (E10-E13). Here we use the payoffs of actions a and b given 
by

u(a(ω)) =
{

10 if ω = ω1

0 if ω = ω2
u(b(ω)) =

{
0 if ω = ω1

10 if ω = ω2

and consider changing the prior. The different values of the prior used are in Table 4 above. Here 
there is only one menu, so that we can only present the results for NIAS violations.
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Table 5
Percentage of random draws that pass condition.

Condition E1 E2 E3 E4 E5 E6 E7 E8 E9

GACI 100 100 100 100 100 77.2 61.4 52.8 45.4
NIAC 58.4 58.4 58.4 58.4 4.2 62.5 12.7 1.5 0
HACI 58.3 58.4 58.4 58.4 100 62.5 10.3 1 0.1
BACI 16.5 35.3 32.2 41.5 0 34.3 0.8 0 0

Table 6
Percentage of random draws that 
pass condition.

Condition NIAS

E1 1
E2 0.1
E3 0.1
E4 0
E5 4.6
E6 2.9
E7 0.2
E8 0
E9 0
E10 49.3
E11 29.9
E12 12
E13 5.9

For each of the environments above, we generate 1,000 different datasets according to the 
sampling procedure described above. When the datasets are related such as E1-E4, E6-E9, and 
E10-E13 we use the same draw of the Monte Carlo distribution to check the conditions in the 
main text. This guarantees that the differences are driven from the structure of the datasets and 
not the sampling scheme. The results of the test are presented in Table 5.

We note that in general GACI is a weak test for the experiments in Dean et al. (2017). In 
particular, E5 we know a priori that GACI and HACI will always be satisfied. The environment 
considered in the main text shows that it is possible to have simple datasets that can detect 
violations of GACI. In particular, E6 has similar power to detect violations compared to NIAC 
and HACI. As the number of menus of a similar flavor as the main example, the power to detect 
violations increases. However, this power increases rather slowly. In Table 6, we examine the 
violations of NIAS.

We note that it is much easier in general to detect violations of NIAS. In particular, almost all 
random datasets generated for E1-E9 are refuted by NIAS. We note that for a single menu with 
more extreme priors lead to higher power to detect violations of NIAS. Thus, it should be more 
surprising that one satisfies NIAS relative to the power of the experiments in Dean et al. (2017)
and perhaps more generally.
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